
Jakob Schmid
Geometric Interactive

The Synthesizer Plugins of
BON

US
SLI

DES
!

Inspiration

Inspiration

Quite & Orange: CDAK (2010)

Music by Lassi Nikko

4K demo

The COCOON Instruments

BOB Arpeggiator

BOB Arpeggiator: Pattern

BOB Arpeggiator: Length

BOB Arpeggiator: Multiply

BOB Arpeggiator: Jump

BOB Arpeggiator: Parameters

Example parameters

Composing with Plugins

Parameter-controlled Form

Boss Fights

FMOD Event Structure

Useful event structure for plugin-based music

 Null channel :

● Volume turned completely down
● All instrument channels Rerouted to Null channel

Dry output is a send same as the effects

Allows mixing/muting tracks while having complete control
over dry/effects sends

Modulation Problems

Early in the project, I had unique modulations on individual parameters

Feels very dynamic and organic

Constructive Interference

Combinations of modulators can produced
unexpected results

Almost impossible to verify that a combination of
modulators always play well together

Worst case, could cause clipping

Parameter-controlled Form

 Non-linear one dimensional score _

Like a linear score, but time can move back
and forward arbitrarily

Define parameter sheet with all desired
instrument configurations

Control using a single parameter

Parameter-controlled Form

It's a bit like the 'Hunt!' level in Braid

where you scrub through a short musical
piece

But with an FMOD parameter instead of
Tim

▶ develop2024-fmod-gig3

Parameter-controlled Form

 Testable by manually scrubbing through the whole
range

 Control options Could be controlled by random LFO or
game (e.g. player position on map)

 Automate everything including key, scale, timbre, effects

 Note chance is useful for transitions

Green in Green: World Position

Key and pitch controlled from
world position

▶ gdc-gig

Cloak Boss Automation

intensity

cloak

bullet_fired

impact

▶ FIXME: which video?

Bass

Insanity

Bass

Insanity

Nightmare

Bass

Bass

arpeggio octave and filter frequency

vibrato

waveform mix, vibrato, filter frequency and resonance

octave, filter frequency

octave, grain size, volume

affects waveform mix and envelopes

EQ filter frequency and delay feedback

Sun Boss

▶ cocoon-cloak_boss.mkv

Debugging

Debugging in DSPcore.exe

Ideally, we wanted to debug running instances of
plugins

both in FMOD Studio and in the running game

Shared Memory for Debugging

 Shared memory between DSPcore.exe and plugin instances (regardless of host app)

Each instance copies its internal state to shared memory

DSPcore.exe visualizes the internal state of each plugin

Works regardless of plugin API (FMOD, VST, Unity NAP, standalone)

Shared Memory using FileMappings

DSPcore.exe creates a local FileMapping using CreateFileMapping

If it exists, plugin instances open it using OpenFileMapping

File is mapped to a memory buffer using MapViewOfFile

Now that the memory is shared, plugins can write, and DSPcore.exe can read

FileMapping

OpenFileMapping

MapViewOfFile

Read/write

Plugin Implementation

K88 Components

Code Examples

Wrappers

K88 Components

Phasor

LUT

Low-pass filter

DC filter

Panner

Phase generator component, generates a control signal
0..1

Lookup table combines with phase generator to make
oscillators or grain windows

Remove unwanted high frequency content with simple
1-pole LPF

to avoid build-up of DC offset

Constant power panner for spreading voices in the
stereo field

K88 Components

Sampler

Sample and hold

Modulation delay

All-pass filter

Pitch quantizer

Sampler with linear interpolation

Sample/hold LFO

Modulation delay based on circular
buffer with linear interpolation

All-pass filter based on circular buffer

Quantizes arbitrary frequencies to
selected scale

Core Component: DC Filter

DCF

y[n] = x[n] - x[n-1] + R * y[n-1]
 R = 1 - (2*PI * cutoff_freq / sample_rate)

- Difference equation from 'Introduction to Digital Filters: with Audio
Applications' (JOS 2007)

- R calculation by hc.niweulb@lossor.ydna at musicdsp.org

Phase Generator Implementation

Effective implementation using 32-bit unsigned integer as clock counter

Modular arithmetic using the 'wrapping' type uint32_t

(don't use signed int, it doesn't support this)

Update method is a single line:

 phase += freq;

Frequency is represented as phase increment per update

Phase Generator Implementation

32-bit fixed point representation of a fractional number in the range [0;1)

Binary: 0.00000000000000000000000000000000 represents 0.0
Binary: 0.11111111111111111111111111111111 represents 0.999985

K88: Phase Generator

 Clock component that generates a control signal 0..1

 Oscillator use as input for a function or table to
generate any periodic signal

Example:

 ph01 = ph_gen.get_phase()

 sin_osc = sin(ph01 * 2 * PI)

Internally uses unsigned 32-bit integer as counter

Bitwig Grid phase generator with oscilloscope

Generating sine wave using phase generator

Phase Generator Implementation

Excerpt of phase generator implementation

Core Component: Fast_table

Table with fast lookup using uint32_t phase as input.

Useful for sine tables and the like with predictable
performance across platforms.

Combines with Phaser to form an oscillator.

Fast_table Implementation

Inspired by MC68000 assembly code...

Table size is power of two for fast lookup.

Bit_size size()
8 256
20 ~1M

Uses bit shifted phase as index

Can be resized for enhanced accuracy without
modifying lookup code.

Fast_table Lookup Code

Steinberg VST Plugin Wrapper

Unity Native Audio Plugin Wrapper

Modulation Delay

MIDI Vocoder

MIDI Vocoder

Home-made vocoder

- Bitwig audio analysis
- MIDI sent via loopMIDI
- Record MIDI in Ableton Live

MIDI Vocoder: Dyson Gate

▶ midi_vocoder-bitwig, midi_vocoder-ableton, cocoon-gate

Puzzle Feedback Music

▶ cocoon-puzzfeed

MIDI Vocoder: Puzzle Feedback

▶ midi_vocoder-puzzfeed

Further Reading

Further Reading

Band-limited Step Functions (BLEP) (Brandt 2001, Leary & Bright 2009)

Non-linear Digital Implementation of the Moog Ladder Filter (Huovilainen 2004)

Natural Sounding Artificial Reverberations (Schroeder 1962)

Introduction to Digital Filters with Audio Applications (JOS 2007)

schmid-cocoon-gdc-bonus-2025-03-25-1546.pdf

