
Jakob Schmid
Geometric Interactive

The Synthesizer Plugins of

Who am I?

Computer scientist, Aalborg University, Denmark

17 years game development experience

Audio programmer on INSIDE

Co-founder of Geometric Interactive

Created electronic music since late 1980s

What is COCOON?

A single-player puzzle adventure by

Geometric Interactive

Game director

Art director

Jeppe Carlsen

Erwin Kho

Production: 6.5 years, 1-13 people

Play time: ~ 5 hours

Game and Audio Engine

Ableton Live

Bitwig Studio

Music Software

Ableton Live 11

Ableton Live was used for sound design and music production

Bitwig was used for music production and prototyping new synthesizers

Bitwig Studio 5

COCOON Audio Team

Audio direction and music

Sound design

Jakob Schmid

Julian Lentz
Mikkel Anttila

Topics

Audio Concepts

The COCOON Instruments

Composing with Plugins

Plugin Implementation

Closing Thoughts

Audio Concepts

Music Concept

Sound Design Concept

Artistic Framework

Music Concept

Vignettes

Ambient music
Big moment: Vignette

Puzzle gameplay: synthesized ambient music

Pre-composed vignettes for big moments

Real-time synthesized ambient music for
puzzle gameplay

Why Real-time Synthesis?

Ambient music doesn't loop during ‘thinking breaks’

Music reacts to game events: notes, timbre, effects

Each player has a unique game soundtrack

Ambient music for COCOON takes up 5 MB on disk in total

(for a 5 hour game)

Loop free

Reactive

Unique soundtracks

Tiny

Why Real-time Synthesis? The REAL reason!

I love creating music systems!

Professional Music Projects

Audioflow (2010) 140 (2013) Rytmos (2023)

Lost Empire: Immortals

Audioflow

140

Rytmos

Dynamic stem mixing system

Graph-based music middleware

Adaptive music systems for Jeppe Carlsen's music platformer

DSP plugins for Floppy Club's puzzle game

Lost Empire: Immortals (2008)

Hobby Music Projects

(~BBC Micro) one-channel music player

AlgoTracker 3-track sample-/synthesis tracker

AlgoTracker music replayer

Emulator of sound board for Eugene Jarvis' Defender (1981)

Acorn Electron AlgoTracker (Pico-8) AlgoTracker (Mega Drive) DefendEmu

Acorn Electron

Pico-8

Sega MD/Genesis

Defender

Synthetic sound design - no recorded sound!

Sound Design Concept

Music aesthetics

Art aesthetics

Familiar process

Fits synthesized ambient music

Fits aesthetics of living artificial worlds

Production process similar to ‘140’

Synthetic Sound Design Experiments

Frogs, crickets, wind

▶ gdc-frog

Artistic Framework

Ambient music

Vignettes

Sound design

▶ gdc-intro

Real-time synthesized ambient music for puzzle gameplay

Pre-rendered synthetic music vignettes for big moments

Pre-rendered synthetic sounds for all sound design

Why the Constraints?

Creating an artistic framework with strict constraints is helpful

Avoid paralysis from too many options

Focus work during the infancy of the project

Coherence in final work

Assists in finding references - "synthesized music without sequencer"
1970s New Age music
Tangerine Dream, Vangelis, Jean-Michel Jarre

 Avoid paralysis_

 Focus_

 Coherence_

 References_

Tangerine Dream (1975), photo by Geoffrey Tyrrell

The COCOON Instruments

BOB

K88

Modnet

Weather

COCOON Instruments

Subtractive synthesizer

BOB

▶ gdc-bob

Arpeggiator

Three oscillators

PWM / vibrato

Ladder filter

Envelopes

Monophonic arpeggiator generates notes

Square, saw, sine oscillators with individual pitch and amplitude

Pulse-width modulation of square wave and vibrato

Ladder filter for resonant filtering

Amplitude and filter envelopes for shaping notes

BOB Structure

BOB Arpeggiator

Named 'Arpegiateur' after Jean-Michel Jarre's 1982 track

Arpeggiator

Usability

Scale

Arpeggiator is the only way that BOB can play anything in COCOON

More flexible than usable

Notes are picked from predefined scale

BOB Arpeggiator: Parameters

Example parameters

K88

Granular synthesis

Two modes

Sample bank

Reverb

Grains of sample data are extracted and windowed

Orchestra and Swarm

4MB built-in sample bank recorded from classic synthesizer

Series of 12 all-pass filters 'smears' the output to create soft pads

K88 Common Output

K88 Orchestra Mode

Sliding playheads

Grains

S/H LFO

Horror music

Slides parallel playheads across sample bank

Grains are extracted from bank under playheads

Sample/hold LFO controls playhead position

Atonal orchestral sound - good for horror!

▶ gdc-k88-orchestra

K88 Orchestra Mode

K88 Swarm Mode

Extracts grains

Scale and pitch

Vibrato and delay

▶ gdc-k88-swarm

Extracts grains from specified offset in sample bank

Grains are tuned to scale between pitch min and max

Per-voice vibrato and modulated delay

K88 Swarm Mode

Note

Slightly simplified for
readability. Swarm mode
actually has two separate
windows, a big window per
'note', and a small window
for looping grains shorter
than the notes

K88: A Sense of Multitude

Stereo spread

Random offset

Per-voice vibrato

Per-voice delay

Spread voice panning

Random grain offset avoids robotic quality

Each voice has unique pitch modulation

Each voice has separate modulated delay

How to imply a multitude of sound sources?

Danish Radio Symphony Orchestra (2022)

Modnet
FM/AM

Brass-like

Originally from 2013

140

FM/AM synthesizer with 16 operators

Brass-like sounds used to dramatic effect

Based on 50-operator non-realtime version
developed in 2013 for a live performance

Also used on the '140' soundtrack

Ableton Operator Algorithm

FM Algorithm Normalized Form

FM algorithm Normalized form Modulation matrix

Modnet Configuration Interpolation

Modulation Matrix 1 Modulation Matrix 2

Modnet Configuration Interpolation

Meta-algorithms

Two patches

Morph

Edge of morph

▶ gdc-modnet

Meta-algorithm generates patches

Two patches are defined, A and B

Morph parameter interpolates between A and B
LFO varies morph to add life to sound

Interesting sounds are found in the interpolation space close to A and B

Weather

Ambience

Grains

Filters

Movement

Wind / rain simulator designed for ambience

Generates up to 20.000 grains per second

Resonant filter for left and right channel

Four LFOs control filter cutoff and resonance

Weather Structure
Duplicated for each stereo channel

Ambience and Music

▶ gdc-weather1 , gdc-weather2

Composing with Plugins

Composing in FMOD Studio

Boss Fights

Mastering

Composing in FMOD Studio
Constant output

3 instruments

FX buses

EQ

Instruments play constantly, phrases and form are exclusively
generated from parameter changes

Three instrument instances used for typical ambient music

Fixed reverb and delay busses

EQ required, especially for Modnet

Note Chance

Used for BOB arpeggiator notes and K88 grains

Play chance

Note-based fading

Note-based ducking

Roll a dice for every note/grain triggered, determining if it should play

Automation enables musical sounding note-based 'fades'

Duck track by setting note chance to 0 during stingers

Incremental Scale Control

Used for BOB arpeggiator notes and K88 grains

Harmonic control

Tension

Scale control allows music to react harmonically to
game state

Increase / decrease harmonic tension

Green in Green

My favorite ambient music in the game.

Green in Green: Plugins

Strings (K88)

Atonal noise (Modnet)

Mellow pad (K88)

Green in Green: Parameter-Controlled Form

Parameter-controlled

Non-linear

Testable

Musical form controlled
by single parameter

'Time' can move
backwards and forwards

Parameter sheet contains
all desired instrument
configurations

▶ gdc-gig

Boss Fights
Synthesis and stems

Adaptive

2-3 instruments, a few prerecorded stems

Real-time synthesized music reacts to boss actions:
pitch, timbre, and filtering

Cloak Boss Tracks

Bass

Insanity

Nightmare

BOB bassline with FMOD Delay

BOB creepy vibrato synth

K88 in Orchestra mode
generates a chaotic orchestral
background

3 instruments plus a few prerecorded stems

Cloak Boss Parameters

intensity

cloak

_bullet_fired_

impact

Boss movement speed

1 when cloaked, 0 when decloaked

Set to 1 when boss fires bullets, returns to 0 over 3.5 seconds

Music ducking, set to 1 during explosions and when catching player

Cloak Boss Automation

Bass

Insanity

Nightmare

Waveform mix, vibrato, filter frequency and resonance

Octave, filter frequency

Octave, grain size, volume

Example parameter: cloak

Cloak Boss FMOD Demo

▶ gdc-fmod_studio

Cloak Boss Gameplay Demo

▶ gdc-cloak_boss

Mastering

Coherence problem

Master plugin

Pre-rendered and real-time synthesized music have different production
quality

Master plugin Wobble adds pitch instability to music bus, improving
coherence

Plugin Implementation

From Bitwig Grid prototype to FMOD Studio Plugin

DSP Components and Signal Graph

K88 and BOB Components

Disclaimer

Self-taught DSP programmer

I'm probably saying things wrong

Bear with me

How to write an FMOD Studio Plugin

FMOD Studio plugin API is open

Plugins are normally written in C++

Start with example project and modify

FMOD Plugin API

K88 Orchestra Mode Bitwig Prototype

The K88 Orchestra mode started as a Bitwig Grid patch

K88 Swarm Mode Bitwig Prototype

The K88 Swarm mode started as a Bitwig Grid patch

DSP Components

A Bitwig Grid patch can be expressed as a graph of DSP nodes.

It can be implemented as a set of simple components and a graph rendering algorithm.

A selection of useful Bitwig Grid nodes

Component: 1-pole LPF

Signal Graph

The signal graph can be implemented in code as a fixed sequence of component updates.

sin_out = osc_sin.get_output()
saw_out = osc_saw.get_output()
out_filtered = lpf.process(sin_out + saw_out)
out = delay.render(out_filtered)

K88 Example Components

Sampler

All-pass filter

Pitch quantizer

Phasor

LUT

Sampler with linear interpolation

All-pass filter based on circular buffer

Quantizes arbitrary frequencies to
selected scale

Phase generator component, generates
a control signal 0..1

Lookup table combines with phase
generator to make oscillators or grain
windows

Band-limited oscillators

Ladder filter

DC filter

BOB Components

Band-limited oscillators avoids aliasing of sawtooth and
square waves

Moog-style resonant filter

DC filter removes DC offset that can be introduced in
signal chains

BOB: Band-limited Oscillators

https://ieeexplore.ieee.org/document/4117934

https://ieeexplore.ieee.org/document/4117934

BOB: Ladder Filter

https://dafx.de/paper-archive/2004/P_061.PDF

https://dafx.de/paper-archive/2004/P_061.PDF

Closing Thoughts

Platforms

Testing and Debugging

Other APIs

Questions

Platforms

COCOON plugins run on

Windows
Xbox Series S|X, Xbox One
PlayStation 5, PlayStation 4
Nintendo Switch

DSPcore.exe: Test Interface

Visualizes output waveform

Easy to step debug

Debugging in DSPcore.exe

Internal plugin state can be inspected

Implemented Based on Shared memory using Windows FileMappings

Other APIs
Steinberg VST

Unity Native Audio Plugin

Audiokinetic Wwise

VST plugins for music software

Unity audio system plugins

Wwise plugins

All DSP code is reused, only plugin interface is different

From sound designer Julian Lentz

Guest Slides

Synthesize slimy and organic friction sounds in the game
- without ever getting your hands wet!

Guest slide by sound designer Julian Lentz

Synthesizing Organic Material (slime)

▶ gdc-slime

Noise XY pad

Controls surface
hardness.
From plastic to softer
organic surfaces.

Formant

Controls overall tone.
Modulating the
parameter can simulate
the sensation of a
cocoon opening in all its
slimy glory.

Synthesizing Organic Material (slime)

Guest slide by sound designer Julian Lentz

iZotope RX De-crackle

Plug-in for removing unwanted crackling.
'Output crackle only' option to get crackling
artifacts produced by vocoder.
This outputs very short sounds reminiscent
of organic / wet friction.

Strength

Control the audible frequency of
transients with the strength
slider.
Mimics the friction force.

Synthesizing Organic Material (slime)

Guest slide by sound designer Julian Lentz

Questions?
Please rate my session!

cocoongame.com

jakob@schmid.dk

@schmid.dk

@jakobschmid

schmid.dk/talks

Web

E-mail

Bluesky

x.com

Slides here

https://cocoongame.com
mailto:jakob@schmid.dk
https://schmid.dk/talks

Thank you.

End of Slides

schmid-cocoon-gdc-2025-03-25-1548.pdf

