
Adaptive and Generative Music
in Games

Sonic College 2025
Jakob Schmid

Overview
● Early Game Audio Hardware
● Adaptive and Generative Music in Games
● Combining Approaches
● Plugin Platforms
● Example Unity Plugins

Early Game Audio Hardware

Hardware synthesizers
● 1970s to mid 1980s: hardware-based realtime synthesis
● Hardware synthesizer-based hardware platforms

○ Arcade machines (1970s and forward)
○ Atari 2600 (1979)
○ ZX Spectrum (1982)
○ Commodore 64 (1982)

Commodore 64ZX Spectrum

Marble Madness

Atari 2600

From Synthesizers to Samplers
● Sound chips with fixed number of DCOs controlled from CPU
● Possible to play samples using clever tricks
● Sample playback hardware become the norm in 1985 and forward
● This mirrored the general evolution in music technology

Amiga 1000 (1985),
sample-based audio hardware

Commodore 64 SID Chip
● 3 DCOs
● Waveforms: pulse, triangle, saw, noise
● Ring modulation, oscillator sync
● Multimode filter: low-, high-, bandpass

(6dB/12dB rolloff)
● 3 Envelope generators

Yamaha YM2151
● FM synthesis, 4 operators
● 8 channel polyphony
● Used in many arcade games by Atari, SEGA,

and Konami
● See also

https://vgmrips.net/packs/chip/ym2151

https://vgmrips.net/packs/chip/ym2151

ZX Spectrum Speaker
● 1 tone generator
● 1-bit volume, on or off

Summary
● Hardware based realtime synthesis was the norm until mid 1980s
● From around 1985, sample-based hardware started to become the norm
● Early audio hardware ranged from 1-bit tone generators to subtractive

synthesis and FM synthesis.

Adaptive and Generative Music in Games

How would you define these terms?
● Adaptive game music
● Generative game music.

Space Invaders
● Arcade 1978
● Plays descending notes

C#1, B0, A0, G#0

● Accelerates from 69 BPM to 690 BPM as
enemies are killed and move faster

● Adaptive using tempo change

📼space invaders

Dragon Warrior
● NES 1986
● Dungeon music changes key with

dungeon level
● Helps player finding their way around?
● Adaptive using key change

Super Mario World
● SNES 1990
● When you ride Yoshi, a bongo track is

added to the music
● Vertical remixing

📼super mario world

Xenon
● Pinball 1980
● Switches between music loops and voice

samples
● Designed and composed by Suzanne

Ciani
● Hard horizontal re-sequencing

📼xenon

iMUSE
● DOS 1991
● Interactive Music Streaming Engine
● LucasArts
● First used in 'Monkey Island 2:

LeChuck's Revenge', DOS 1991
● Adaptive MIDI music with seamless

transitions and feedback to gameplay
● Horizontal re-sequencing with

transitions

📼monkey island 2

Dig Dug
● Arcade 1982
● Each step of your little guy is

accompanied by a musical note
● ~ Mickey Mousing
● Synchronized scoring

📼dig dug

Otocky
● NES 1987
● Music generated by gameplay elements
● Hardware NES synth, 5 channels +

sample playback
● Interactive music

📼otocky

Electroplankton
● NDS 2005
● Generative music toy
● Uses collisions from 2D physics model to

generate notes
● Note-generative

📼electroplankton

Rise of the Tomb Raider
● PS4, Xbox One 2015
● Dynamic Percussion System for

battle sequences
● Generated drum sequence that

reacts to battle intensity level
● Note-generative

📼tomb raider

Spore
● Windows 2008
● Editors (such as creature editor)

generates notes in realtime based on
choices (e.g. meat-eater or vegetarian)

● Most sounds are samples, some realtime
synthesized

● Kent Jolly and Brian Eno
● Uses PureData
● Note-generative

FRACT OSC
● Windows 2014
● First-person puzzle game where you

construct a realtime-synthesized piece of
music

● Uses PureData
● Realtime synthesis

Combining Approaches

Tetris Effect
● PS4, Xbox One 2018
● Quantizes player input to

beats and triggers samples
in time with music

● Samples are pitched to
reflect key changes in music

● Each level is an music toy
that the player can play with

📼tetris effect

● Hybrid interactive/adaptive music
● Interactive: player input is quantized and plays notes
● Vertical remixing (possibly): according to level progress
● Horizontal re-sequencing with transitions: big transitions according to

level progress

Tetris Effect: Music System

140
● Windows 2013
● Vertical remixing used to

dynamically change music
with player movement

● Hard horizontal
re-sequencing used when
delivering a new key

COCOON
● Windows/consoles 2023
● Vignettes: hard horizontal

re-sequencing using FMOD Studio
● Ambient: realtime generated using

custom FMOD synthesizer plugins
● Boss fights: combines all

techniques
● Ambient adapts to player position
● Boss fights adapts to game state

● Hybrid adaptive/generative music
● Hard horizontal re-sequencing for vignettes
● Realtime generated ambient
● Adapts to player position and game state

COCOON: Music System

Rytmos
● Switch, Windows 2023
● Music by Niels Böttcher
● Note-adaptive sequencing

based on puzzle state
● Uses scales carefully

selected to fit music genre
● A few realtime Unity Native

Audio Plugin effects by me

📼rytmos

● Sample-based audio hardware
● Cheaper memory makes sampled sound

more useful

Mid-late 1990s

● 24 channels, 16-bit, 44.1 KHz
● Each channel:

○ looping
○ pitch
○ amplitude envelope
○ panning
○ effect send on/off

● 1 stereo streaming CD track
● 1 configurable delay / reverb effect
● 512 KB audio memory

PlayStation Audio Hardware

● PlayStation 1998
● Stealth action game
● Directed by Hideo Kojima

Metal Gear Solid

● Normal >> ALERT: immediately when spotted
● ALERT >> EVASION: automatic when hidden for a while
● EVASION >> Normal: automatic when hidden for a while

Metal Gear Solid: Game States

Normal

ALERT

EVASION

spotted

hidden

timeout

● 12-track sample-based sequencer
● Follows game states:

● Normal >> ALERT: immediately play ! sound (diminished chord),
key and tempo change, exciting music

● EVASION: some tracks fade out and tempo slows down
● EVASION >> Normal: Switch to calm background music

Metal Gear Solid: Music System

Normal

ALERT

EVASION

📼metal gear solid

● Hybrid adaptive music
● Horizontal re-sequencing (hard change for ALERT state, otherwise

gradual transitions)
● Vertical remixing (tracks are faded gradually after ALERT)

Metal Gear Solid: Music System

Summary
● Combining approaches is powerful
● Tetris Effect, Metal Gear Solid, 140, COCOON, Rytmos

Audio Plugins

MIDI-like Sequencing
● Sequencing of samples or real-time synthesis
● Key changes
● Removing notes
● Procedural / generative music

Cubase (1989)

Real-time Synthesis
● Parameter changes controlled from game
● Subtle changes in timbre accompany game events
● Variations in timbre retain player interest even though sequence repeats

Ableton Live 10: Operator

Modern Realtime Synthesis
● Implemented as audio plugins in sound engines
● Normally rendered on CPU, not in dedicated hardware

FMOD Studio plugin

Audio Plugin Types
● FMOD Studio Plugin
● Wwise Sound Engine Effect Plugin
● Unity Native Audio Plugin
● VST 2.4
● Audio Units (Core Audio)

What is an Audio Plugin?
● A piece of code that outputs samples to an audio buffer
● Some wrapping that enables parameters and stuff

Audio Buffers
An audio buffer is a block of memory containing samples:

 S0 S1 S2 S3 S4 S5 S6 S7

Rendering to Audio Buffer
An audio buffer is a block of memory containing samples:

 buffer -> S0 S1 S2 S3 S4 S5 S6 S7

 float [] buffer = new float[SAMPLE_COUNT];

Rendering code fills buffer with samples:

 void process(float [] output, int length)

 {

 for(int s = 0; s < length; ++s)

 output[s] = COMPUTE SAMPLE;

 }

Stereo Audio Buffer
An interleaved stereo audio buffer:

 L0 R0 L1 R1 L2 R2 L3 R3

Rendering to Stereo Audio Buffer
An interleaved stereo audio buffer:

 L0 R0 L1 R1 L2 R2 L3 R3

Rendering code:

 float [] buf = new float[SAMPLE_COUNT * 2];

 void process(float [] output, int length) {

 int idx = 0;

 for(int s = 0; s < length; ++s) {

 output[idx++] = COMPUTE LEFT SAMPLE;

 output[idx++] = COMPUTE RIGHT SAMPLE;

 }

 }

Synths vs. Effects
Implemented exactly the same way, except:

- Effects receive audio input
- Synths receive note and parameter input

Effect Rendering
Example code for a mono effect:

 float [] input = new float[SAMPLE_COUNT];

 float [] output = new float[SAMPLE_COUNT];

 void process(float [] input, float [] output, int length)

 {

 for(int s = 0; s < length; ++s)

 output[s] = COMPUTE SAMPLE FROM input[s];

 }

Summary
● Realtime synthesis is done using software audio plugins
● Different audio software have different plugin types
● Audio plugins output samples to audio buffer
● Synths and effects are very similar, except for their input

Plugin Platforms

Plugin Platforms

Same code,
different
platforms

FMOD Studio Plugin
FMOD_RESULT F_CALLBACK Plugin_FMOD_dspprocess(

FMOD_DSP_STATE *dsp,

unsigned int length,

const FMOD_DSP_BUFFER_ARRAY * inbufferarray,

 FMOD_DSP_BUFFER_ARRAY *outbufferarray,

 [..])

{

RENDER length SAMPLES TO outbufferarray->buffers[0]

return FMOD_OK;

}

Unity Native Audio Plugin
[..] ProcessCallback([..],

float* inbuffer, float* outbuffer, unsigned int length,

int inchannels, int outchannels)

{

 RENDER length SAMPLES TO outbuffer

}

VST 2.4
void VstXSynth::processReplacing(

float** inputs, float** outputs, // input / output - buffers

VstInt32 sample_frames) // buffer size

{

 // not interleaved, left and right are separate

float* buf_left = outputs[0];

float* buf_right = outputs[1];

RENDER sample_frames SAMPLES TO buf_left AND buf_right

}

Summary
● Same code can easily be adapted for different plugin platforms
● FMOD Studio, Unity Native Audio Plugins, and VST 2.4 have similar

interfaces

Example Unity Plugins

Unity C# Plugin Structure
class MySynthBehaviour : MonoBehaviour

{

 [...]

void OnAudioFilterRead(float[] data, int channels)

{

int length = data.Length / channels;

int idx = 0;

for (int s = 0; s < length; ++s)

{

data[idx++] = COMPUTE LEFT SAMPLE

data[idx++] = COMPUTE RIGHT SAMPLE

}

}

}

Sine Synth
float phase = 0.0f;
float freq = 200.0f;
const float secondsPerSample = 1.0f / 48000.0f;
void OnAudioFilterRead(float[] data, int channels)
{

int length = data.Length / channels;
int idx = 0;
for (int s = 0; s < length; ++s)
{

float out = Mathf.Sin(phase * Mathf.PI * 2.0f);
data[idx++] = out; // left channel
data[idx++] = out; // right channel
phase += freq * secondsPerSample;
if(phase > 1.0f) phase = 0.0f;

}
}

Distortion Effect (from 140)
int D = 0; // downsample factor

void OnAudioFilterRead(float[] data, int channels)

{

if(D > 1)

{

 for (int s = 0; s < data.Length; s+=2)

 {

 data[s] = data[s / D * D]; // left channel

 data[s+1] = data[s / D * D + 1]; // right channel

 }

}

}

Music Code Example
class SpookyBeat : MonoBehaviour

{

 float s = 0;

 void OnAudioFilterRead(float[] data, int channels)

 {

 int smp = 0, length = data.Length;

 while (smp < length)

 {

 s = ++s % 288000;

 float p = (s / 288000) * 0.5f;

 float pBar = (p * 8) % 1;

 float hhAmp = (0.13f + ((pBar * 4) % 1) * -0.09f);

 // mixer

 float output = BD(pBar * 8 / 3) * 0.8f

 + HH((pBar * 8) % 1) * hhAmp

 + bass(p) * 0.2f + bass(p - 0.024f) * 0.1f;

 for (int c = 0; c < channels; ++c)

 data[smp++] = output;

 }

 }

 // Bassdrum: sine with pitch and amplitude envelope

 float BD(float p)

 {

 float env = Mathf.Clamp01(0.1f - (p % 1f)) * 10f;

 float fr = 30f + env * 100f;

 float ph = (p % 1f) * fr;

 return Mathf.Sin((ph % 1f) * 6.28f) * env;

 }

 // Hihat: noise with amplitude envelope

 float HH(float p)

 {

 return Mathf.PerlinNoise(p * 2000, 0f) * (1f - p);

 }

 // Spooky bass: FM synth

 float bass(float p)

 {

 return Mathf.Sin(p * 4000 + Mathf.Sin(p * 4000

 + Mathf.Sin(p * 3.28f) * 1111))

 * Mathf.Sin(((p * 64 / 3f) % 1) * 3.141f);

 }

}

Summary
● Unity audio plugins can be written in C#
● Unity audio plugins have the same structure as other audio plugins
● Example synth and distortion effect
● Example music code

References
Karen Collins: "An Introduction to Procedural Music in Video Games" (2009)
https://bit.ly/2FfuN6E

Igor Dall'Avanzi: "Procedural Music in AAA: Rise of the Tomb Raider and the
Dynamic Percussion System" (2016)
https://bit.ly/2HMEvjJ

Leonard J. Paul: School of Video Game Audio lectures about Pure Data for games
https://bit.ly/2FnIGjo

https://bit.ly/2FfuN6E
https://bit.ly/2HMEvjJ
https://bit.ly/2FnIGjo

References
Nameless Algorithm: "Digital Signal Processing References" (2024)
https://namelessalgorithm.com/computer_music/blog/dsprefs/

https://namelessalgorithm.com/computer_music/blog/dsprefs/

Questions?

Control
● PS4, Xbox One 2019
● Martin Stig Andersen
● Micro-sequencing

VST Plugins or Audio Units in Games?

VST Plugins or Audio Units in Games?
If plugin is open source or homemade:

● Relatively easy to adapt to game audio plugin

VST Plugins or Audio Units in Games?
Most interesting VST/AU plugins are not open source.

Technically they could still work in a game, however:

● Illegal distribution: Most VST/AU plugins licensing models do not allow for
redistributing to potentially millions of users in a game.

● Limited platforms: Most VST/AU plugins are available in binary form for
Windows and Mac OS X, but not for Android, iOS, PS4, Xbox One, etc. so
would only work on computers.

VST Plugins or Audio Units in Games?
● Possible.
● Not practical!

Audio Plugin Interface
● Audio system calls our code with buffer
● Our code writes samples to buffer
● Audio hardware outputs buffer to speaker

Wwise Sound Engine Effect Plugin
void IAkOutOfPlaceEffectPlugin::Execute(

AkAudioBuffer * io_pInBuffer, // input buffer

AkUInt32 in_uInOffset, // offset

AkAudioBuffer * io_pOutBuffer) // output buffer

 {

 float *buf = io_pOutBuffer->GetChannel(0);

 RENDER [FIXME - how many samples?] TO buf

}

Dead Space
● Xbox 360, PS3 2008
● Uses traditional dynamic orchestral

music
● Atonal orchestral stings are

triggered by the player seeing a
mutant for the first time

DEMO: Example Plugins in Action
● Standalone

● Unity Native Audio Plugin

● FMOD Studio

● VST 2.4

Atari 2600 TIA Chip
● Integrated graphics and sound
● 2 DCOs pulse waveform
● 32 pitch values (not enough)
● 4 bit volume

