
Develop:Brighton 2024
Jakob Schmid

Geometric Interactive

Who am I?

Computer scientist from Aalborg University, Denmark

16 years experience in game development

Audio programmer on Playdead's INSIDE

Co-founder, audio director, composer, programmer at
Geometric Interactive

(10-person Copenhagen studio)

Studied music and created electronic music since the
late 1980s (SoundTracker and forward)

What is COCOON?

A puzzle adventure game by

Geometric Interactive

Director:

Jeppe Carlsen

Art director:

Erwin Kho

Production time: 6.5 years

Play time: ~ 5 hours

Some People Seem to Like It

Audio direction / music:

Jakob Schmid

Sound design:

Julian Lentz
Mikkel Anttila

COCOON Audio Team

Topics

Audio concepts and production

The COCOON Instruments

Composing with Plugins

Plugin Implementation

Closing Thoughts

Audio Concepts and Production

Music Concept

Sound Design Concept

Artistic Framework

Real-time Synthesis

Music Concept

 Pre-composed vignettes for the big moments

 Real-time synthesized ambient music for puzzle
gameplay

Big moment: Vignette

Puzzle gameplay: synthesized ambient music

Synthetic sound design - no recorded sound!

● Fits aesthetics of synthesized ambient music
● Fits art style: artificial but alive
● Familiar process from ‘140’

Sound Design Concept

Bitwig Studio and Ableton Live was used for music production and sound design

 Ableton Live designing sounds, especially the unique Corpus plugin

 Bitwig Studio developing new synthesizers, sophisticated automation

Music Software

Ableton Live 11Bitwig Studio 5

Synthetic Sound Design Experiments

Frogs, footsteps, portals

▶ frog

Artistic Framework

 Real-time synthesized ambient music for puzzle gameplay

 Pre-rendered synthetic vignettes for moments

 Pre-rendered synthetic sound design

▶ cocoon-intro

Why the Constraints?

Creating an artistic framework with strict constraints is helpful to:

 Avoid paralysis from too many options

 Focus early work during the infancy of the project

 Create coherence in the final work

 Find references e.g. "Synthesized music without sequencer":

1970s New Age music

Tangerine Dream, Vangelis, Jean-Michel Jarre

Why Pursue Real-time Synthesis?

Real-time synthesis has interesting benefits:

 Loop free during ‘thinking breaks’

 Unique soundtracks for each player

 Reactive music can react to game events, in terms of notes, timbre, effects

 Tiny Ambient music for COCOON takes up 5 MB on disk in total (for a 5 hour game)

Why Pursue Real-time Synthesis?

Even more important reason?

I love designing and writing music systems!

Music Systems

Previous professional projects:

 Lost Empire: Immortals -
Dynamic stem mixing system for a 4X game

 Audioflow -
Graph-based game music middleware

 140 -
Music systems for Jeppe Carlsen's music platformer

 Rytmos -
DSP plugins for Floppy Club's puzzle game

Audioflow (2010)

Lost Empire: Immortals (2008)

140 (2013)

Rytmos (2023)

Hobby Projects

 Acorn Electron (~BBC Micro) one-channel music player

 Amiga modified ProTracker replayer to 'mutate' samples during playback

 Pico-8 AlgoTracker: 3-track sample-/synthesis tracker

 Sega Mega Drive/Genesis music routine (WIP)

 Defender arcade machine sound board emulator

Acorn Electron ProTracker (Amiga) AlgoTracker (Pico-8) AlgoTracker (Mega Drive) DefendEmu

The COCOON Instruments

BOB

K88

Modnet

Weather

COCOON Instruments

 Monophonic subtractive synthesizer

 Arpeggiator to generate notes (because FMOD Studio doesn't have MIDI)

 Three oscillators square, saw, and sine, individually adjustable pitch and amplitude

 Pulse-width modulation of square wave (also, vibrato)

 Ladder filter for resonant filtering

 Amplitude and Filter Envelopes

BOB

▶ develop2024-fmod-bob

BOB Structure

Arpeggiator

 Arpeggiator generates notes the only way BOB can play anything in COCOON

 More flexible than usable hard to use for anyone but me

 Named 'Arpegiateur' after Jean-Michel Jarre's 1982 track

Arpeggiator: Incremental Scale Control

Arpeggiator: Pattern

Arpeggiator: Length

Arpeggiator: Multiply

Arpeggiator: Jump

Arpeggiator: Combination

Combining these parameters gives a lot
of flexibility

K88

 Granular synthesis (sort of)

 Two modes Orchestra and Swarm

 Shared sample bank 4MB built-in bank, recorded from classic synthesizers

 Smearing reverb Series of 12 all-pass filters 'smears' the output to create soft pads

K88: Swarm Mode

 Extracts grains from specified offset in sample bank

 Scale and pitch controls Grains are tuned to scale between pitch min and max

 Per-voice pitch instability Each voice has random pitch modulation

 Modulation delay Separate delay for each voice

- Gives each voice uniqueness, enlarging total sound

 Low pass filter on output to remove unwanted high frequency artifacts

▶ develop2024-fmod-k88

K88: Based on Bitwig Grid Patch

The K88 Swarm mode started as a Bitwig Grid patch

K88: Orchestra Mode

 Slides parallel playheads across sample bank

 Windowed grains are extracted from bank and played

 Random LFO controls playheads sliding

 Random offset to each grain avoids robotic quality

 Atonal orchestral sound works well for horror sequences

K88: Orchestra Mode

▶ bitwig-orchestra

The K88 Orchestra mode started as a Bitwig Grid patch

Modnet

 FM/AM synthesizer with 16 operators

 Interpolates between two configurations

 Brass-like sounds used to dramatic effect in COCOON

Non-realtime version developed in 2013 for a live
performance

Also used on the '140' soundtrack

Modnet

 A meta-algorithm and a few parameters generates a patch (10 meta-algorithms)

 Two patches are defined, A and B

 Morph parameter interpolates between A and B

 Morph LFO slightly varies morph to add life to sound

Interesting sounds are found close to A and B

▶ develop2024-fmod-modnet

Weather

 Wind / rain simulation

 Generates grains up to 20.000 per second

 Dual resonant filters left and right channel

 Four LFOs controlling filter cutoff and resonance

Weather Structure

Duplicated for
each stereo
channel

Used for Ambience and Music

▶ develop2024-fmod-weather1 , develop2024-fmod-weather2

Composing with Plugins

Composing in FMOD Studio

Note Chance

Incremental Scale Control

Parameter-controlled Form

Mastering

Composing in FMOD Studio

Experimentation with instruments

 3 instruments for typical ambient music

 Fixed effect buses reverb and delay used prominently

 Some EQ required especially for Modnet

FMOD Event Structure

Useful event structure for plugin-based music

 Null channel :

● Volume turned completely down
● All instrument channels Rerouted to Null channel

Dry output is a send same as the effects

Allows mixing/muting tracks while having complete
control over dry/effects sends

Note Chance

Used for BOB arpeggiator notes and K88 grains

 Play chance for every note/grain triggered, roll a dice if it should play

 Note-based fading automate to perform musical sounding note-based 'fades'

 Note-based ducking set note chance to 0 to stop new notes during stingers

Incremental Scale Control

Used for BOB arpeggiator notes and K88 grains

 Harmonic control allows music to react harmonically to game

Scale control up: More harmonic tension

Scale control down: Less harmonic tension

Modulation Problems

Early in the project, I had unique modulations on individual parameters

Feels very dynamic and organic

Constructive Interference

Combinations of modulators can produced
unexpected results

Almost impossible to verify that a combination
of modulators always play well together

Worst case, could cause clipping

Parameter-controlled Form

 Non-linear one dimensional score :

Like a linear score, but time can move
back and forward arbitrarily

Define parameter sheet with all
desired instrument configurations

Control using a single parameter

Parameter-controlled Form

It's a bit like the 'Hunt!' level in Braid

where you scrub through a short
musical piece

But with an FMOD parameter instead
of Tim

▶ develop2024-fmod-gig3

Parameter-controlled Form

 Testable by manually scrubbing through the
whole range

 Control options Could be controlled by random
LFO or game (e.g. player position on map)

 Automate everything including key, scale, timbre,
effects

 Note chance is useful for transitions

Mastering

Problem:

 Production incoherence between pre-rendered vignettes and real-time synthesized
ambient music

 Coherence is improved by master plugin Wobble adding pitch instability to all music

Boss Fights

Mostly real-time synthesized

Music reacts to boss actions

▶ cocoon-cloak_boss.mkv

Plugin Implementation

From Bitwig Grid prototype to FMOD Studio Plugin

DSP Components and Signal Graph

K88, BOB, Modnet Components

Debugging

Disclaimer

Self-taught DSP programmer

I'm probably saying things wrong

Bear with me

How to write an FMOD Studio Plugin

FMOD Studio plugin API is open

Plugins are normally written in C++

Start with example project and modify

From Bitwig Grid Prototype to Plugin

▶ bitwig-swarm

Bitwig Grid prototype for K88 Swarm mode

DSP Components

A Bitwig Grid patch can be expressed as a graph of DSP nodes.

It can be implemented as a set of nodes and a graph rendering algorithm.

Each node is a simple DSP component, such as:

● oscillator
● filter
● delay

More about these later…

A selection of useful Bitwig Grid nodes

Signal Graph

The signal graph can be implemented in code as a fixed sequence of component updates.

For example,

this graph can be rendered like this:

1. render osc output, then
2. render LPF using output from osc as input
3. render delay using output from LPF as input

osc LPF delay

Example signal graph implementation (pseudocode)

osc = get_osc_output()
osc_filtered = lpf.process(osc)
out = delay.render(osc_filtered)

DSPcore.exe: Test Interface

▶ dspcore

Visualizes output waveform

Easy to step debug

Can show debug info for
plugin instances

Wrap as FMOD Plug-in Instrument

K88: Implementing Swarm Mode

Bitwig Grid patch

K88 Components

 Phase generator clock component, generates a control signal 0..1

 Look-up table combines with phase generator to make
oscillators, Hanning windows

 Low-pass filter to remove unwanted high frequency content
(simple 1-pole LPF)

 DC filter to avoid build-up of DC offset

 Constant power panner for spreading voices in the stereo field

K88 Components

 Sampler with linear interpolation

 Sample and hold component with smoothing

 Modulation delay based on circular buffer with linear
interpolation

 All-pass filter based on circular buffer

 Pitch quantizer quantizes random pitch to specified
scale

K88: Translate Signal Graph to C++

Signal graph is a tree structure

Render 'leafs' first, use as input for branches

If possible, let component render entire buffer,
otherwise 1 sample at a time

 Band-limited oscillators to avoid aliasing of sawtooth and square waves

 Ladder filter for resonant filtering

 DC filter removes DC offset that can be introduced in signal chains

BOB Components

BOB: Band-limited Oscillators

BOB: Ladder Filter

Ladder
Filter

 16 interconnected sine oscillators with FM and AM

 Quality parameter controls number of round-robin updates

Patch generation based on 10 meta-algorithms and parameters

 Morphing between two patches

 Automatic morph modulation to give life to the sound

Modnet Components

Modnet: Morphing Between Patches

Modulation is represented
using matrices

One modulation matrix
for FM, one for AM

Modnet: Ableton Operator Algorithm 3

Modnet Normalized Form

Modnet: FM and AM/output Matrices

Modnet: Interpolation

Modnet in COCOON: 16 Operators

Debugging in DSPcore.exe

Ideally, we wanted to debug running
instances of plugins

both in FMOD Studio and in the running
game

Debugging in DSPcore.exe

Shared Memory for Debugging

 Shared memory between DSPcore.exe and plugin instances (regardless of host app)

Each instance copies its internal state to shared memory

DSPcore.exe visualizes the internal state of each plugin

Works regardless of plugin API (FMOD, VST, Unity NAP, standalone)

Shared Memory using FileMappings

DSPcore.exe creates a local FileMapping using CreateFileMapping

If it exists, plugin instances open it using OpenFileMapping

File is mapped to a memory buffer using MapViewOfFile

Now that the memory is shared, plugins can write, and DSPcore.exe can read

Closing Thoughts

Other Wrappers

Platforms

Other Wrappers

The DSPcore synths can easily be wrapped as other plugin formats:

● Steinberg VST for music software
● Unity Native Audio Plugin for the built-in Unity audio system

All DSP code is reused, only plugin interface is different

All Platforms

The COCOON plugins run on these platforms

- Windows
- Xbox Series S|X, Xbox One
- PlayStation 5, PlayStation 4
- Nintendo Switch

Game and Soundtrack

cocoongame.com

Twitter: @playcocoon

Contact me on

E-mail: jakob@schmid.dk

Twitter: @jakobschmid

Slides will be available here: schmid.dk/talks

Please rate my session!

Questions?

mailto:jakob@schmid.dk
http://schmid.dk/talks

Bonus Slides

K88: Phase Generator

 Clock component that generates a control signal 0..1

 Oscillator use as input for a function or table to
generate any periodic signal

Example:

 ph01 = ph_gen.get_phase()

 sin_osc = sin(ph01 * 2 * PI)

Internally uses unsigned 32-bit integer as counter

Bitwig Grid phase generator with oscilloscope

Generating sine wave using phase generator

Core Component: DC Filter

DCF

y[n] = x[n] - x[n-1] + R * y[n-1]
 R = 1 - (2*PI * cutoff_freq / sample_rate)

- Difference equation from 'Introduction to Digital Filters: with Audio
Applications' (JOS 2007)

- R calculation by hc.niweulb@lossor.ydna at musicdsp.org

Phase Generator Implementation

Effective implementation using 32-bit unsigned integer as clock counter

Modular arithmetic using the 'wrapping' type uint32_t

(don't use signed int, it doesn't support this)

Update method is a single line:

 phase += freq;

Frequency is represented as phase increment per update

Phase Generator Implementation

32-bit fixed point representation of a fractional number in the range [0;1)

Binary: 0.00000000000000000000000000000000 represents 0.0
Binary: 0.11111111111111111111111111111111 represents 0.999985

Phase Generator Implementation

Excerpt of phase generator implementation

Core Component: Fast_table

Table with fast lookup using uint32_t phase as input.

Useful for sine tables and the like with predictable
performance across platforms.

Combines with Phaser to form an oscillator.

Fast_table Implementation

Inspired by MC68000 assembly code...

Table size is power of two for fast lookup.

Bit_size size()
8 256
20 ~1M

Uses bit shifted phase as index

Can be resized for enhanced accuracy without
modifying lookup code.

Fast_table Lookup Code

Further Reading

Band-limited Step Functions (BLEP) (Brandt 2001, Leary & Bright 2009)

Non-linear Digital Implementation of the Moog Ladder Filter (Huovilainen 2004)

Natural Sounding Artificial Reverberations (Schroeder 1962)

Introduction to Digital Filters with Audio Applications (JOS 2007)

Steinberg VST Plugin Wrapper

Unity Native Audio Plugin Wrapper

From Bitwig Prototype to FMOD Plugin

Translate More Components to C++

MIDI Vocoder: Dyson Gate

▶ midi_vocoder-bitwig, midi_vocoder-ableton, cocoon-gate

MIDI Vocoder

Home-made vocoder

- Bitwig audio analysis
- MIDI sent via loopMIDI
- Record MIDI in Ableton Live

Puzzle Feedback Music

▶ cocoon-puzzfeed

MIDI Vocoder: Puzzle Feedback

▶ midi_vocoder-puzzfeed

Inspiration

Quite & Orange: CDAK (2010)

Music by Lassi Nikko

4K demo

