COCOON

Game Audio Playthrough Nov. 2023

What is COCOON? COCOoOOnN

A puzzle adventure game
Geometric Interactive
Director:

Jeppe Carlsen
Art director:

Erwin Kho

Production time: 6.5 years

» cocoon-intro

COCOON Audio Team

Audio direction / music:
Jakob Schmid
Sound design:

Julian Lentz
Mikkel Anttila

Music Concept

Generative music using real-time synthesis

- Loop free during ‘thinking breaks’
- Unique soundtrack for each player

Sound Design Concept

Synthetic sound design - no recorded sound!

- Fits aesthetics of generative music
- Fits Erwin’s art style: artificial but alive
- Familiar process from ‘140’

Synthetic Sound Design Experiments

Frogs, footsteps, portals

Envelope OOscillator

Attack Decay Release Time<Vel Wave Y
144ms 14.4ms 50.0ms 0% sin -

[Filter 1.00kHz ~ Width 8.00

-infd8 0.0dB -infdB 0% 0% off Q.
Loop Key Phase Osc<Vel < Y — - L | Rete Fitter Time
None ~ 0% 0% o ‘ i I o 050Hz 00% 0.0%

| initial Peak Sustain Vel Feedback Repeat | M 8 1 3
=) : 1 Modulation ‘

Sound Designers Needed!

Synthetic sound design

- Challenging and fun
- Slow process
- | needed help!

And now ... Julian

Real-time Synthesized Music

» cocoon-gig

Bitwig Granular Swarm Experiment

= sampling-swarm X

T TR o 60.00 1.1.1.00

1/4 0:00.000

« o~ [R RS
- L

Pan Flute / universe-sampling-swarm-pan_flute / 64 Voice Spread / Instrument Layer / 64 Voices / 64 Voices

v a
Note idx Voice lifetime
W oo - T oo
MS = ==
— = - °
200 20 6o —re
Sampling
Windowing: The Trgger e
Trigger Pitch
Pich Sl W pich Quantze etime 0 Window
¢ S sl o - S = @@ o+ o:0
4s0% 4560 240] L o v 2108 @) = 20« 0o
smiro = (e oe wssto Prasor
st o+) o (@) ©) -~
o 5 000 st +000Hz w92% 1155
=S lnnr Astenuate SHLFO & Attenuate pitch Dice. smp offset.
o(@ S ot L . o @ ool v + —o @ o s + owo
0 Window e (@) -
- »o N i@ > o 4o o + -
= o B + 1098 \v0 °
ook Goetengm Tigow |/ = o o Atenate | TineMod
T0scopo + o —so (@) o0 el b0 omso + cuw @ @ o= @ vos ot oso (1) oso
of o o 001% ° 190ms o t Pitch Textures 132% /\ ‘ x 100% x 152%
3 3 ROOT €3 0 cent a8 =4 5
= Pre
i o7
[¢ s P oar9s 1 mas
T [——r— _ = 6 (& (& (o (o= ~ o
™| 0 perform- \/ D - W w W w -
Show MIDI
o Los Lol g +
2 /@ 8 - N a
= i ~ - N:N: g
1.1 000 @) | . 5. H.HLH- { .
8 % B s Wi deune Timewos ‘MM BN 2
3 g g

- -
detLFo - :
Q(- = = \/ *) " -) e (@ Note FX A&
out

e o
Gain I 5 Gain o | Pitth Gide®

o o - -

°
2
z

e

©
°

)
=

i | Arrance mix eom | @ [Ht DOUBLECLICK Insertdevice SHIFTADOUBLE-CLICK Insert favorites

» bitwig-swarm

What if this was in the Game?

Note idx Voice lfetim
< e 2 BC
. (e g

Trigger

::g Zf"t.,) o

Pitch
s } T
.. ﬂc(ﬂ,‘.. o -—~¢

===
c 1

I 2::mm,_.m,,. ,.v.m.u,“‘\ il
TRICOCIO S

R AR r—

rom Bitwig Prototype to FMOD Plugin

Note idx Voice lifetime
a0 B
W owo X owo + oo + so o N oo o
S. o s
B 0 & o S=oeo er ° °
w00 2400 e300 —
Sampling
= Windowing: The Triger modele
Trigger Pitch N
prnscer W pich Quantze OWdow Miod iy e
o b1 o ooeo WE W@ - = Py oo (@) (@)
4560 240 eEsreren 24048 4 000%

@

Windaw randomization P

©-
1:99 000 st * 000Hz o
=
o ~—o @ o— 0 4 oo
~ L o o
o 5 O ERE]
- ®
’\ POS o ot
b - o N
o ®
ROOT C3 Ocents GAIN 0048 b= 4
o@®

Ay & P 1795 1 184s

BANK OFFSET SWARM

Grain Size (ms) LPF Freq Volume

Schmid | K88 0.50
1.0.0 2023-08-13

offset (s) Voice Spread Random offset Note Freq Note Chance Pitch min Pitch max Scale Vibrato
Sampler On Voice Count
Automatable
: = O £) () > 20O O O (@
49%

665 430 0% -14.0 -8.00 3.80 5.90
Octave Semitone Detune =
Fine Offset (s) Frequency ~ Amount Smoothness Time Feedback Base Freq. Strength

Debug Dump @ @ 9 9 Offset Modulation @ ® G Delay @ ® Delay Mod ® @ Feos Cons (

2.70
0.16 39%

Translate Components to C++

Pitch Quantize

|
are

note / 12.0;
int pitch quantized_idx = octavedl = selected_pitches_count;
aSsert (piteh Quantized idx = © & pitch quantized. 1dx < selected_pitch
int pitch_quantized = selected_pitches[pitch_quantized_idx];
return pitch_quantized + octave = 12

_count);

che:

Phasor
<> o

1:99 0.00 st 0.00 Hz

class Phaser
i

private:
NSt Float PHASE_MAX = 4294967296

public

Phaser() {}

save_state(state &s;

L

state. fre L
State.to_active = 15_active

oid load_state(const State &

phase = state.phase;

frea_ph_p_smp - state. freq_ph_p_sup;
is_acti is_active;
inline void restart()
phase = ou;
is_active = true;
inline void updateQ)
{
phase += freq_ph_p_smp;

115s

class Hod_delay
{

vate
Circbuf bufo, bufl;

int sample_rate;

pub

reallocate(float max_

int sampl

~feedback =

feedbackel; }

per

set_ smnu(hness(hm' <moot jr‘e<:)‘
¢ set_delay(fLo
 set_delay.instantaneous(Float

mple_frames);
r, int32_t sample_frames,

fe:
4 render_float32_stereo_interleaved_additive(fLo:
float gain_dry, F

S/HLFO

146 Hz [0

s

s sample_and_hold
Phaser phaser;

target_value;

sample_period;

public
sample_and_hold()
{

target_value = random_xor_shift:
current_value = target_value;
set_smoothness(6);
sample_period = 1 / u8000.0F;

andom_f10at01(

oid set_freq(fl

at fr

sample_rate)

phaser.set_freq(freg, sample_ra
sample_period = 1.6f / sample_ra

G

d set_smoothness(flo

float smoothness0l_exp = ease_out(smoothnessel, u.66);

slew_rate_per_second =

lerp_inline(100 o& (0.1f, smoothnessel_exp);
S

slew_rate_per_second = sample_per:

id update()

if (phaser

.is_pulse_now())

target_value = random_xor_shift::random_floatel();
phaser. update();
current_value = slew(current_value, target_value, slew_rate);

oat get_valueo1()

1 update first

5
£

return current_value;

Translate Patch to C++

= samplng swarn

void Swarm::render_float32_stereo_interleaved(floatx buffer, int32_t sample_frames, uint6d_t clock)

using namespace random_xor_shift;

Ens
window_size_ns = clamp(window_size_ns, min_window_ns, max_window_ms
bank_offset_s = clamp(bank_offset_s, min_bank_offset s, max_bank_offset_s);

float start_time_s = bank_offset_s - window_size_ms x 0.5f x 6.001f;

float ank_offset_s + window_size_ms x 0.5f x 0.601f;
float start_tine_s » ;

float end_swp = end_time_s x u4100;

int max_offset = min(4u168, static_cast<int>(end_smp - start_sap));

int idx = 0
for (int i

6, count = sample_frames; i < count; +1i)
buffer[idx+]
buffer[idx++]

3

float amp = sqrtf(1.0f / voice_count);

for (int vidx = 8; vidx < voice_count; +vide)
i

float vo1 = idx_to_81(vidx, voice_count);
float pan_factor_L
float pan_factor_r
Voice_states state = voices[vidx];

0.0f;
0.0f;

float window_big
Float window_loop

int idx = 0,
for (int
i

6, count = sample_frames; i < count; +1i)

bool retrigger = state.note_phasor.
if (retrigger)
i

is_pulse_now();

_m__ Fa w0 0
am Pan Fite/ ¥ /64 Vices /64 Vices
Note idx Voice lifetime
W oo x o ; e n e
Sampling
e e PSS —
e == s
5o -5 e vl ; B |
o e mEmEs® - S B] S @~ e
e B hel ey —to e | i@ Y 58
S (@) e e e L B B
3 oviion P (@) = {
=5 @ > . B U
e K T W @ e @ 2~ D on v (@) o+
=i o) pretd =k o S e N e
— e ox o8 1 > o
C s P owes 1 mas ‘
«u R — - Vo = i
™| o periorm- N s LU -
55 .1 @ @~ AN g
B] o et vl | | e ¢ .
‘0e. . =
(| (@
olollo = e T . O-R-0-R- (| O® = @
2l - = 8 8 & o ciaen ox

T e

Trigger
if (random_floate1() < note_chance)
{

int pitch = lerp_inline(pitch_min, pitch_max, randon_floate1())
int pitch_scale = quantize_pitch_uniformly(pitch, scale_bitfield)

int current_offset = random_int(8, max_offset);
State.start_smp = current_offset + start_smp;
state.end_smp = current_offset + end_smp;

r mming Navefora 1
12+ semitone + detun
ot e e R)

FIXHE: Conp
float tune = octave =
state.current_freq =

state. sample_phasor. restart();

7/ stop
else
state. current_freq = - voice off
3
float oute
float outl
bool i (state.current_freq > -1.06);

_voice_on =
if (is_voice_on)
{

float freq = state.current_freq + state.pmod.get_valuedl() x vibrato;
state.sample_phasor.set_freq(freq / window_size_ns, sample_rate);

window_big
window_Loop

hanning_window->lookup_uint32(state.note_phasor. phase);
hanning_window->lookup_uint32(state.sample_phasor.phase);

phasedl = state.sample_phasor. saw_upd1();
sample_idx = lerp_inline(state.start_smp,

state.end_smp, phasedl);

e i
window_big = windon.

SUt = get nterpolated._sample_dectypt(mavaforn; mavefora length; sample_idx) = amp.win:
buffer with panning

s amp * pan_factor_L;

outl = out = amp x pan_factor_r;

oute += state.delayd.render_single_mono(oute);
outl += state.delayl.render_single_mono(out1);

buffer[ddx++] += outd;
bufferfidx++] += outl;

Float mod = sine_table->lookupel_uint32(state.delay_mod_phasor.phase) = delay_mod_str;
state.delaye. set_delay(mod_delay_time + mod);
state.delayl. set_delay(mod_delay_time + mod);

state.delay_nod_phasor. update(
state. sample_phasor. update();
state.note_phasor. update() ;
state.pnod. update();

Test in custom GUI

plot [normal, zoomm(1.60, 1.60), offsete(8.86, 0.86), size buffers376ss]

o Tose s s e 6z 7ss G7es omy 1294 iz 1w Gses leo Usen ieeza Zows i asee mooaz 2sosy
visg
Closr copy

g T g

(5)-6. 422610

cied, 376667

783393

1. ba60s0
Losding "CIRCVERS 0.5.3.16782" from c:/develop/dspcore/CIRCVERS, json
npuE Lovel -0, 473673

i mencry server oKinits

» dspcore

iz08 K80 dsbug menory server OKnitial ized Modnat debuq menory servar oK

2oz

Brser

Tonez

Filter

So1z7

Sirz Saser aeez

¥ options

Kogborrd Trput

Rendering

Sera7

cctave

plot size
W plot offset
plot channel

 huio enbled?

+.00000 Hvolme
TEST 6.1,
Ensbl
TEWPLATE 6.5.3. 10782
enable
¥e6 0.5, 4.10782
 Enabled
49833 microseconds (99678 unfiltered) (3.9 %) U Usage
Sl wode
] 6.000 Grainsas
20,008 M voicecoune
o0 ll octave.
N 200 Semitone
ke oetune.
L] 0.107 Bankoffs.
o213 Il eankofrines
[RE) sin
000 N votune
1000 B sorpleron
sesess M wrireq
(] 5000 Reverbosy
12,008
n 2.087
B v
0,000
.00
L 0.500
B e
] o010
" 0114
o797]
(] .20
o5 <obgPhast
0060 sobgurints
0560 sobgurant
o060 sobguntopd

“obguLopt

Wrap as FMOD Plug-in Instrument

0:00:200 :00:: :00:: 0:00:350 0:00:400 0:00:450 0:00:500 0:00:550 650 0:00:700 0:00:850 0:00:900

mus-SAH mus-paramA — -

Logic Tracks

(2) mus-paramA

BANK OFFSET SWARM

el Stze (s} Offs Voice Spread Random offset Note Fres Note Chance Pitch mi Pitch max Scale Vibrato LEEFreg Volume
i itchmin i ibrs
Ii Il Slmpler On Voice Count g B d PN N
Automatable ()
s _J { A\

Schmid | K88 5.00 111k

% 5% . 430 -8.00 280 5.80 5.90
LR aR e Octave Semitone Detune X Gain Reverb Decay
Fine Offset (s) Frequency Amount Smoothness Time Feedback BaseFreq. Strength ==

Debug Dump st @ @ ® Offset Modulation @ ® @ Delay @ ® Delay Mod @ @ Preset Config (O

2.00
0.16 87% 0.01 0.00

» fmod-k88

COCOON Plugin Instruments

BANK OFFSET SWARM
Offset (s) Voice Spread Random offset Note Freq Note Chance Pitchmin Pitch max Scale Vibrato

ey e o 5 © Do o

Schmid | K88 5.00 1.1k 100%
145k 430 -8.00 28.0 5.80 5.90

18202505 15 Semitone Detune Gain Reverb Decay
Fine Offset (s) Frequency Amount Smoothness Time Feedback BaseFreq. Strength

v . 0 O (D R—— @ @ @ @ wes Q)) frecome ()

0.00 -26% 2.00
0.16 0.01 0.00

Grain Size (ms) LPF Freq Volume

Oscillator ~ Grain freq Spread ase freq LFreq RFreq

AlgA Param 0 Param 1 Semitone Detune

Bl O 0101000 ¢ ¢ | T laeleie telele

Schmid | Modnet Waving Chord 100% 100% g 4.40 Schrid [Wearher 100% 0.00 0.02 0.42

0.0 : -
0.0 2023-08-13 Qul ty AigB Param0 Param1 Semitone Detune Amp MorphEasing - 1.0.0 2023-08-13 Min freq Max freq

CPOLOLOOE@sd = =030 0o

50.0 . 0.02 0.03 0.00
0.70 0.04

"'—" Q LFreq RFreg str

ARPEGIATEUR i Octave Semitone Square Sine Freq Cutoff KeyTrack FENVamt Resonance Attack Decay Sustain Release

gl e C NC (] G () @ 9 E 2CE @O

Schmid | BOB Pattern Length Multiply Jump 1.00 -2.00 19.0 1.80 -2.58k 0.70 2.30k 0.62 0.02 3.00 66% 0.58

Pattern i
1.0.0 2023-08-13 Square Sine Freq Attack Decay Sustain Release

e = 1O O O O~ O O 2 © o ®

i SH_wl) -
: 0.02 0.02 240 0.58

Real-time Synthesized Music in FMOD

» fmod-gig

Real-time Synthesized Music on All Platforms

Windows

- Xbox Series S|X, Xbox One
- PlayStation 5, PlayStation 4
- Nintendo Switch

libfmod.prd FMOD::O! id")
libfmod Ewmwm@mmwmsgmd int)
libfmod pr!FMOD:DSPF int*unsigned int)
: id* unsigned int?,int)
KFMOD.DSP STATE floatunsigned intunsigned i’ mt")

libfmod.; 10D:D! pl ||lH|
| [libfmod.¢ | [i oD:DsPResampler] [||
oDz |] libfmod.; 1 1l

libfmod, prx*FMOD |

immw EFMDD IIDI
libfmod.pnafmon | | | [|
libfmod poafMoD]| |{[tibfim [i | |
libfmod.prxEMOD || DI[I]
libfmod.pnefmon| (T[]
libfmod prxIFMOD | ‘l il

libfm|

K8g nge render {Ioa|32 sterc
ﬂlllm [TMLLILI ke pretavipass fitter:.|
I HIIII[IIII\I]VI]I]UID (T
[IIIII‘IIIH}!l\I\II)I I}HH IIH?!IIIIIH

LR ARAY

==

MIDI Vocoder: Dysonate

i3

» midi_vocoder-bitwig, midi_vocoder-ableton, cocoon-gate

MIDI Vocoder / Note FX Layer / Note Grid / Note .. -+ 0

3 This patch does a vocoder-Like spectral analysis of any
e audio using 64 Sallen-Key BP 8-pole filters, and sends
- the result as 64 MIDI notes with velocity, corresponding
© Erabie @ Actie to frequency and amplitude Note Generator

The temporal resolution is controlled using note frequency

AL ot and chance. Chance values lower than 108% reduces C) - () - —selixic tob W »L
ActveVoces 64764 bandnidth and often leads to a more pleasing end result “wox saox o m
e when resynthesizing. Values around 30% are recommended 0scaer Gt At crance s
o 00 wose e 00 - >
Never " Nt on [T The smoothness parameter determines the window size used | oo o o s 4 o amm oL & o O
@ stessamekey. for amplitude detection. Larger values 'blur' the sound - -
St e time 1 g il 2
Routing
Note Treu
Control Thru Input Frequency Band » ° °
AudoThs
 Device e . ~
e () OO ER The spectral information is sent as
b o (@ MIDI notes with velocity, corresponding to
L L] - . frequency, amplitude
® Shutte [T @ bd Detect Amplitude

- Bitwig audio analysis T - “» ; I
- MIDI sent via loopMIDI
= Re CO rd M | D I i n Ab I eto n Live LB ro generate o4 notes, we fix pitch to C3 and use 2 MLTI-IOTES to generate 816-64 NOTE GRID voices. |

W oewrs Lo 300

® o Fin Veo 5o Pin Voo — sped et) [
- - - o 000% o 0 000% L] *
© om0x o W o oo . (‘ (a (. (. "
& w| o 000% wl o o oo% []
: B 5 g oEm SR
g .8 +[H . e e o omx . Note e Note . Gate
> <1 5 g o —
H - £ 2| 000% ERRO) o o000 []
o 000% [0 o000% L] T 1
o n
CONC) e
© acox o o oox EETE W (.
© owox o o om EOTE W | reGan volCuve KeyTrck VeiGon = o e L

[&

In this example, we use =
Ableton Live for resynthesis I o
of the spectral MIDI data. rom

1oopMIDI Port v
However, any MIDI device 1 Atchamet -
should work, even hardware
devices '“ —

e ~

LEPTDT At it oes i NID ot P 15
Ableton Livi

On current hardware, Live can't handle more than around
uS KB/s of MIDI data

Disable Feedback-Detection in LoopMIDI to avoid auto-muting

@ instrumont Rack

Fixea Love
B o oo s :
° ioom | . |a[s ok ntan
© CECEl oo B @S o) Fixed Level
forerno MELE ML ICCY | Coous
. oo om O s oy Fixaa Love
Dros 81 Koeyane o Soress To extend polyphony of any Ableton instrument, use an 1 o -inf a8
s Instrument Rack with Key splits Coarse Fine Fixed Lovel

Puzzle Feedback Music

» cocoon-puzzfeed

Puzzle Feedback

MIDI Vocoder

0
)

Rl

TR

h

Bt e

g]
ey

» midi_vocoder-puzzfeed

Questions? CO@@®ON

Contact Jakob on

twitter.com/jakobschmid
jakob@schmid.dk

b9 STEAM' fo) XBOX (1B s Lesrs|era

