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What is COCOON? COCOoOOnN

A puzzle adventure game
Geometric Interactive
Director:

Jeppe Carlsen
Art director:

Erwin Kho

Production time: 6.5 years
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COCOON Audio Team

Audio direction / music:
Jakob Schmid
Sound design:

Julian Lentz
Mikkel Anttila




Music Concept

Generative music using real-time synthesis

- Loop free during ‘thinking breaks’
- Unique soundtrack for each player




Sound Design Concept

Synthetic sound design - no recorded sound!

- Fits aesthetics of generative music
- Fits Erwin’s art style: artificial but alive
- Familiar process from ‘140’




Synthetic Sound Design Experiments

Frogs, footsteps, portals
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Sound Designers Needed!

Synthetic sound design

- Challenging and fun
- Slow process
- | needed help!




And now ... Julian




Real-time Synthesized Music

» cocoon-gig



Bitwig Granular Swarm Experiment
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What if this was in the Game?
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rom Bitwig Prototype to FMOD Plugin
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Translate Components to C++

Pitch Quantize

|
are

note / 12.0;
int pitch quantized_idx = octavedl = selected_pitches_count;
aSsert (piteh Quantized idx = © & pitch quantized. 1dx < selected_pitch
int pitch_quantized = selected_pitches[pitch_quantized_idx];
return pitch_quantized + octave = 12

_count);

che:

Phasor
<> o

1:99 0.00 st 0.00 Hz

class Phaser
i

private:
NSt Float PHASE_MAX = 4294967296

public

Phaser() {}

save_state(state &s;

L

state. fre L
State.to_active = 15_active

oid load_state(const State &

phase = state.phase;

frea_ph_p_smp - state. freq_ph_p_sup;
is_acti is_active;
inline void restart()
phase = ou;
is_active = true;
inline void updateQ)
{
phase += freq_ph_p_smp;

115s

class Hod_delay
{

vate
Circbuf bufo, bufl;

int sample_rate;

pub

reallocate(float max_

int sampl

~feedback =

feedbackel; }

per

set_ smnu(hness(hm' <moot jr‘e<:)‘
¢ set_delay(fLo
 set_delay.instantaneous(Float

mple_frames);
r, int32_t sample_frames,

fe:
4 render_float32_stereo_interleaved_additive(fLo:
float gain_dry, F

S/HLFO

146 Hz [0

s

s sample_and_hold
Phaser phaser;

target_value;

sample_period;

public
sample_and_hold()
{

target_value = random_xor_shift:
current_value = target_value;
set_smoothness(6);
sample_period = 1 / u8000.0F;

andom_f10at01(

oid set_freq(fl

at fr

sample_rate)

phaser.set_freq(freg, sample_ra
sample_period = 1.6f / sample_ra

G

d set_smoothness(flo

float smoothness0l_exp = ease_out(smoothnessel, u.66);

slew_rate_per_second =

lerp_inline(100 o& (0.1f, smoothnessel_exp);
S

slew_rate_per_second = sample_per:

id update()

if (phaser

.is_pulse_now())

target_value = random_xor_shift::random_floatel();
phaser. update();
current_value = slew(current_value, target_value, slew_rate);

oat get_valueo1()

1 update first

5
£

return current_value;



Translate Patch to C++

= samplng swarn

void Swarm::render_float32_stereo_interleaved(floatx buffer, int32_t sample_frames, uint6d_t clock)

using namespace random_xor_shift;

Ens
window_size_ns = clamp(window_size_ns, min_window_ns, max_window_ms
bank_offset_s = clamp(bank_offset_s, min_bank_offset s, max_bank_offset_s);

float start_time_s = bank_offset_s - window_size_ms x 0.5f x 6.001f;

float ank_offset_s + window_size_ms x 0.5f x 0.601f;
float start_tine_s » ;

float end_swp = end_time_s x u4100;

int max_offset = min(4u168, static_cast<int>(end_smp - start_sap));

int idx = 0
for (int i

6, count = sample_frames; i < count; +1i)
buffer[idx+]
buffer[idx++]

3

float amp = sqrtf(1.0f / voice_count);

for (int vidx = 8; vidx < voice_count; +vide)
i

float vo1 = idx_to_81(vidx, voice_count);
float pan_factor_L
float pan_factor_r
Voice_states state = voices[vidx];

0.0f;
0.0f;

float window_big
Float window_loop

int idx = 0,
for (int
i

6, count = sample_frames; i < count; +1i)

bool retrigger = state.note_phasor.
if (retrigger)
i

is_pulse_now();
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Trigger
if (random_floate1() < note_chance)
{

int pitch = lerp_inline(pitch_min, pitch_max, randon_floate1())
int pitch_scale = quantize_pitch_uniformly(pitch, scale_bitfield)

int current_offset = random_int(8, max_offset);
State.start_smp = current_offset + start_smp;
state.end_smp = current_offset + end_smp;

r mming Navefora 1
12+ semitone + detun
ot e e R )

FIXHE: Conp
float tune = octave =
state.current_freq =

state. sample_phasor. restart();

7/ stop
else
state. current_freq = - voice off
3
float oute
float outl
bool i (state.current_freq > -1.06);

_voice_on =
if (is_voice_on)
{

float freq = state.current_freq + state.pmod.get_valuedl() x vibrato;
state.sample_phasor.set_freq(freq / window_size_ns, sample_rate);

window_big
window_Loop

hanning_window->lookup_uint32(state.note_phasor. phase);
hanning_window->lookup_uint32(state.sample_phasor.phase);

phasedl = state.sample_phasor. saw_upd1();
sample_idx = lerp_inline(state.start_smp,

state.end_smp, phasedl);

e i
window_big = windon.

SUt = get nterpolated._sample_dectypt(mavaforn; mavefora length; sample_idx) = amp.win:
buffer with panning

s amp * pan_factor_L;

outl = out = amp x pan_factor_r;

oute += state.delayd.render_single_mono(oute);
outl += state.delayl.render_single_mono(out1);

buffer[ddx++] += outd;
bufferfidx++] += outl;

Float mod = sine_table->lookupel_uint32(state.delay_mod_phasor.phase) = delay_mod_str;
state.delaye. set_delay(mod_delay_time + mod);
state.delayl. set_delay(mod_delay_time + mod);

state.delay_nod_phasor. update(
state. sample_phasor. update();
state.note_phasor. update() ;
state.pnod. update();




Test in custom GUI

plot [normal, zoomm( 1.60, 1.60), offsete( 8.86, 0.86), size buffers376ss]
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Wrap as FMOD Plug-in Instrument
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COCOON Plugin Instruments

BANK OFFSET SWARM
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Real-time Synthesized Music in FMOD

» fmod-gig



Real-time Synthesized Music on All Platforms

Windows

- Xbox Series S|X, Xbox One
- PlayStation 5, PlayStation 4
- Nintendo Switch
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MIDI Vocoder: Dysonate

i3

» midi_vocoder-bitwig, midi_vocoder-ableton, cocoon-gate



MIDI Vocoder / Note FX Layer / Note Grid / Note .. -+ 0
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Puzzle Feedback Music

» cocoon-puzzfeed



Puzzle Feedback

MIDI Vocoder
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Questions? CO@@®ON

Contact Jakob on

twitter.com/jakobschmid
jakob@schmid.dk
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