
Unbreaking Immersion

Wwise Tour 2016
Martin Stig Andersen and Jakob Schmid

PLAYDEAD

Audio Implementation for INSIDE

Martin Stig Andersen
Audio director, composer and sound designer

Jakob Schmid
Audio programmer at Playdead

Composer and sound designer on 140

INSIDE

PLAYDEAD

June 29 on Xbox One, July 7 on Steam

Commenced 2010

Martin Stig Andersen composer, sound designer

SØS Gunver Ryberg composer, sound designer

Andreas Frostholm sound designer

Jakob Schmid audio programmer

Playdead Audio Team

● Introduction
● Voice
● Scene Change
● Performance

Unbreaking Immersion

Slides available online. Link on last slide!

Voice

Voice Concept
● Natural and adaptable audio playback
● Integration of physical and emotional states

Voice Demo

INSIDE Technology
Unity

Audiokinetic Wwise

Modified Wwise-Unity plugin

PlayMaker

Voice Sequencer
● Sequencer implemented in C# using Wwise callbacks
● Sequences voice sound events, alternating between inhale and exhale

Voice Sound Events
● Which sound to play is defined by switches:

○ Action
○ Emotion
○ Intensity
○ Etc.

● Intensity is a numeric value:
○ Increases with physical exertion
○ Decreases when idle

Voice Sequencer Modes

play sound

br. cycle

wait

switches

breath breath

step step step

Continuous Mode Rhythmic Breathing

Voice Sequencer Modes

play sound

br. cycle

wait

switches

breath breath

step step step

Continuous Mode Rhythmic Breathing

update breath cycle
(inhale/exhale)

Voice Sequencer: Continuous Mode

SetSwitch

update breath cycle
(inhale/exhale)

Voice Sequencer: Continuous Mode

set action, emotion,
intensity, etc.

SetSwitch
SetRTPCValue

Voice Sequencer: Continuous Mode

set action, emotion,
intensity, etc.

play sound

Get callback when event finished:
PostEvent (eventID, gameObject, AK_EndOfEvent, ...)

update breath cycle
(inhale/exhale)

Voice Sequencer: Continuous Mode

play sound wait for sound to finish

set action, emotion,
intensity, etc.

Wait for AK_EndOfEvent callback

update breath cycle
(inhale/exhale)

Voice Sequencer: Continuous Mode

play sound

update breath cycle
(inhale/exhale)

wait for sound to finish

set action, emotion,
intensity, etc.

Natural Breathing
● Recorded breath sounds have varying durations
● Continuous sequencing results in natural, uneven breathing pattern

Animation Feedback
● Every breath results in a callback to the game
● Callback controls additive breathing animation, affecting boy pose

Holding Breath
On jump:

if currently inhaling, stop afterwards

if currently exhaling, do a quick inhale, then stop

On land:

restart breathing with exhale (action = land)

soft impact: normal exhale, hard impact: grunt

Engagement Actions
Special actions indicate performing work, uses different set of sounds

not engaged engaged passive engaged active

Voice Wwise Setup

Voice Sequencer Modes

play sound

br. cycle

wait

switches

breath breath

step step step

Continuous Mode Rhythmic Breathing

Voice Sequencer Modes

play sound

br. cycle

wait

switches

breath breath

step step step

Continuous Mode Rhythmic Breathing

Rhythmic Breathing
● Goal: breath should align with footsteps when running
● Non-continuous sequencing

Rhythmic Breathing
● Goal: breath should align with footsteps when running
● Non-continuous sequencing
● 1 breath for every 2 steps

footstep
right

footstep
left

footstep
right

breath breath

Rhythmic Breathing Transition
● When not running, breath runs continuously
● When starting to run, gradually transition from continuous rhythm to footstep

rhythm

play sound

br. cycle

wait

switches

breath breath

step step step

Continuous Mode Rhythmic Breathing

Run Cycle Phase

0.00 0.25 0.50 0.75 0.00

footstep
right

footstep
left

footstep
right

Run Cycle Phase
0.00

0.25

0.50

0.75

footstep right

footstep left

● Full cycle is 2 steps
● Right footstep on 0.0
● Left footstep on 0.5

Breath Phase
● Breathe when phase is 0
● Full cycle is 1 breath
● When switching from continuous to

rhythmic breathing:
○ Compute frequency from last 2 breaths

○ Compute phase from frequency and last
breath time

0.00

0.25

0.50

0.75

breath

● Gradually align breath rhythm to run cycle rhythm
● Align two frequency, phase pairs

Gradual Alignment

footstepsbreathing

frequencyfrequency

phase

phase

align with

● Who knows about aligning two frequency, phase pairs?

Gradual Alignment Problem

Solution: Beat Matching
● Who knows about aligning two frequency, phase pairs?
● DJs do.

Solution: Beat Matching
● Gradually interpolate breath frequency towards run cycle

frequency
● Compensate breath frequency for phase offset

- Like a DJ that uses pitch adjust without nudging the record

footstepsbreathing

frequencyfrequency

phase
align with

phase

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

update breath phase
from frequency

wait until breath
phase = 0

determine footstep
rhythm

match breath rhythm
to footsteps

get frequency
and phase

beatmatch

● Voice direction is accomplished using our voice configuration system
● The director (Martin) instructs the actor (voice sequencer) how to emote:

○ based on location or
○ based on reacting to events

Voice Direction

Voice Configuration
● Trigger boxes
● State machines
● Scripts
● Gives full control over voice parameters

○ action
○ emotion
○ intensity

Voice Configuration: Trigger box

Voice Configuration: State Machine

Voice Intensity
● Boy movement generates

exhaustion
● Voice intensity = lowpass

filtered exhaustion
● Voice Intensity selects depth

and force of breathing
● Depending on the emotion

parameter, intensity defines:
○ Physical exertion level
○ Intensity of character emotion

time

intensity

Voice Intensity Clamping
● Clamping constrains intensity

to a given range

intensity

time

Voice Intensity Interpolation in Space
● Useful for indicating proximity to danger

intensityx

Voice Intensity Interpolation over Time
● Useful for creating reactions to

game events, and relaxing over
time.

Voice Summary
● Single event, switch hierarchy determines sound
● Continuous sequencing using callbacks
● Rhythmic breathing uses beatmatching to align breath to footsteps
● Voice direction with trigger boxes and state machines
● Voice Intensity can be clamped
● Clamping can be interpolated in space and time

Shockwave Demo

Scene Change
● When main character dies, scenes are reloaded
● Audio should retain state and continue during load
● When reload is complete, audio should switch to new state instantly
● We call this a scene change

Image credit: The New York Times: 'Times Lapse Video: Behind the Scenes at the Metropolitan Opera'

Scene Change Events

Boy death

Fade out start

Fade out complete

Unload scenes

Load scenes

Fade in start

Fade in complete

Scene Change Implementation
Boy death - death event

Fade out start - prepare_spawn_[savepoint]

Fade out complete - pause Wwise updates (RenderAudio)

Unload scenes - scene stop events

Load scenes - scene and global start events

Fade in start - post spawn_[savepoint]

 - resume Wwise updates

Fade in complete

Scene Change Implementation
Wwise updates are paused during scene change:

● Retains audio state during scene change
● Wwise commands accumulated during load
● All commands are executed at once when

scene change is complete Image credit: www.artsjournal.com

Creates the illusion of no time passing during scene change

Performance

Debugging INSIDE Audio
● 2D gameplay: predictable, testable performance
● Profile entire playthrough and analyze the data
● Record audio digitally and inspect for glitches

CPU Performance
● Virtual Voices are your friends
● Inaudible sounds are still updated, but not mixed

Fixing glitches
● Scene Change requires large command queue (2 MB)
● Caused glitches with standard 512 sample audio buffer
● Audio buffer size adjusted to 1024 samples

 initSettings.uCommandQueueSize = 2048 * 1024;

 initSettings.uNumSamplesPerFrame = 1024;

Wwise-Unity Plugin Modifications
● Wwise API wrapped in C#
● General Unity performance concerns:

○ Unity API calls are slow
○ Runtime allocations cause CPU spikes on garbage collection

C# API Optimization
Unity API calls are slow.

We removed AkGameObj check from all Wwise API calls (except in editor):

#if UNITY_EDITOR

if (in_gameObjectID.activeInHierarchy) {

 if (in_gameObjectID.GetComponent<AkGameObj>() == null) {

 in_gameObjectID.AddComponent<AkGameObj>();

 Debug.LogError("Missing AkGameObj", in_gameObjectID); // no AkGameObj = error

 }

}

#endif

Avoiding Callback String Allocation
User Cues and Markers are sent from Wwise as hashes instead of constantly
allocating C# strings:

AkCallbackSerializer.cpp (Wwise-Unity plugin code):

 const char *s = pCueInfo->pszUserCueName;

 akCallbackInfo.cueHash = AK::SoundEngine::GetIDFromString(s);

And recognized based on hash in Unity:

Custom callback handler (Unity C# code):

 string cueNameToWaitFor = "my cue";

 // if(info.pszUserCueName == cueNameToWaitFor) { ... }

 uint hash = AkSoundEngine.GetIDFromString(cueNameToWaitFor);

 if(hash == akCallbackInfo.cueHash) { ... }

Performance Summary
● Virtual Voices
● Glitches caused by large command queues:

○ Audio buffer size 1024

● Wwise-Unity plugin optimized:
○ Removed slow Unity API calls
○ User cues and markers are hashed to avoid allocations

Questions?

Jakob Schmid

Twitter: @jakobschmid

E-mail: jakob@schmid.dk

game140.com

Martin Stig Andersen

martinstigandersen.dk

E-mail: martin@martinstigandersen.dk

playdead.com

Slides are here:

schmid.dk/talks/2016-06-16-wwise

BONUS SLIDES

Audio-driven Gameplay: User Cues
● Named User Cues can be placed in music segments
● Received in Unity as callback when AkCallbackManager.PostCallbacks is

called (normally, the next frame after cue occurred).

Receiving User Cues
● Receiving User Cues:

void HandleCallback(object akCookie, AkCallbackType akType, object akInfo) {

 if(akType == AkCallbackType.AK_MusicSyncUserCue) {

 AkCallbackManager.AkMusicSyncCallbackInfo info =

 (AkCallbackManager.AkMusicSyncCallbackInfo) akInfo;

 if(info.pszUserCueName == cueNameToWaitFor) {

 // do stuff

 }

 }

}

AkCallbackType callbackTypes = AkCallbackType.AK_MusicSyncUserCue;

AkSoundEngine.PostEvent(eventID, gameObject, callbackTypes, HandleCallback, cookie);

Getting Music Time
● The game can also get music time information directly from Wwise:

AkCallbackType flags = AkCallbackType.AK_EnableGetMusicPlayPosition;
uint id = AkSoundEngine.PostEvent(eventID, gameObject, (uint)flags);
AkSegmentInfo info = new AkSegmentInfo();
AkSoundEngine.GetPlayingSegmentInfo(id, info, doExtrapolation);
float musicTime = info.iCurrentPosition * 0.001f;

Voice Action and Emotion Override
● Action is normally determined automatically from animation
● Action and emotion can be overriden in Voice Configuration
● Enables defining voice reactions in custom situations
● Morphing allows automatically changing emotion after a specified time

Profiling Tips: Recording
● Record playthrough and use Connect To File
● Record large profiler sessions (~ 2 hours) by setting Capture Log Max

Memory Usage to 3999 MB

Profiling Tips: Comparing

Wwise is single-instance.
Compare two profile sessions
by running another instance in
a virtual machine (e.g.
VirtualBox)

Debugging Tips: Recording Audio
● Tiny audio glitches
● 256 samples of zeros when command

queue was large
● No errors in Wwise profiler, only

detectable using audio recordings
● Record console output using S/PDIF
● Barely audible glitches are easy to spot in

spectrogram

CPU Performance
● Wwise runs on CPU core 5, Unity worker threads run on core 2-4:

 platformSettings.threadLEngine.dwAffinityMask = (1 << 5)

Avoiding Callback Allocations
Single instance of callback data structure is reused for every callback.

I/O Performance
● Look for streams that are used a lot throughout the game, and convert them

to non-streams. Searching and opening in List View is useful for this.
● We used PCM for music, and all other sounds vorbis (quality 10)

Teaser and Bios
Teaser
A 5-year collaboration between sound designer Martin Stig Andersen and programmer Jakob Schmid on INSIDE, Playdead's follow-up to award-winning game
LIMBO, has led to an uncompromising audio implementation, unique in its design choices and level of detail. This talk focuses on the design and implementation of
foley and voice for the main character of INSIDE, and the seemless handling of the death - respawn cycle.
The talk will cover both the Wwise setup and game engine tools used for audio features, and show how Wwise can be used as a compositional tool.
Finally, performance results and considerations will be discussed in relation to the topics covered.

Bios
Martin Stig Andersen (b. 1973) has a background as a composer in the fields of acousmatic music, sound installations, electroacoustic performance, and video art,
earning several international distinctions and awards. In 2009 he joined Playdead where he created the audio for the video game LIMBO which won Outstanding
Achievement in Sound Design at the Interactive Achievement Awards, the IndieCade Sound Award 2010, and was nominated for best audio at the BAFTA Video
Games Awards 2011. In the years following the release of LIMBO, Martin Stig Andersen has been working on Playdead’s next title, INSIDE, which is to be released
2016.
Martin Stig Andersen graduated as a composer from The Royal Academy of Music in Aarhus, Denmark in 2003, after which he went on to study electroacoustic
composition under Professor Denis Smalley at City University, London.

Jakob Schmid (b. 1976) graduated as a computer scientist specialized in game development and a minor degree in music science from the University of Aalborg,
Denmark in 2007. Working in the danish video game industry since 2008, Schmid has specialized in developing novel dynamic audio systems for video games.
He created the music and sound for Jeppe Carlsen’s rhythm platformer '140', which went on to win the 'Excellence in Audio' award at IGF 2013, with honorable
mention in Technical Excellence, as well as the 'Sound of the Year' award at SpilPrisen 2014.
Schmid joined Playdead in 2011 as audio programmer, mainly working on the studio's next title, 'INSIDE'.

