
Recovery August 15, 2006

1 Recovery

Recovery algorithms must take actions during transaction processing to
allow recovery should a failure occur. In the event of failure, they must re-
store database contents to a consistent state without compromising trans-
action properties:

• atomicity - a transaction must happen completely or not at all

• durability - when a transaction is succesfully completed, no system
crash (except HD failure :) results in data loss.

Databases are preferably stored on stable storage, such as Redundant
Arrays of Independent Disks (RAID), which replicate the data and thus
greatly reduces the chance of data loss. Data writes to RAIDs are not com-
pleted before the data is written in the required number of duplicates.

2 Logging

To ensure atomicity, the DBMS writes a log describing the changes to the
data, and first when the log is succesfully written to stable storage, the
changes are performed. In the event of a failure, this allows a rollback to
the last consistent state before the failure.

The log is a sequence of log records:

• An update log record has the form

〈Ti, data item, old value, new value〉

, where Ti is the transaction ID, ’data item’ is the location on disk of
the data item to update, ’old value’ is the value of the data item before
the write(not used in the ’deferred database modification’ scheme),
and ’new value’ is the value after the write.

• 〈Ti start〉 signifies that transaction Ti has started

• 〈Ti commit〉 signifies that transaction Ti has committed

• 〈Ti abort〉 signifies that transaction Ti has aborted

1/ 3



Recovery August 15, 2006

2.1 Deferred Database Modification

Under the deferred database modification recovery scheme, the execu-
tion of writes is delayed until the transaction is partially committed, i.e.
the transaction is completed except for writing the changes to disk.

When a transaction is processed, we start by writing 〈Ti, start〉
to the log. When the transaction wants to update values, we write
〈Ti, data item, new value〉 to the log. When the transaction partially
commits, we write 〈Ti, commit〉 to the log. The log must be flushed to
stable storage before executing the actual update.

The following example shows transaction T0 that transfers 100 from
data item A to data item B, and transaction T1 that adds 1000 to data item
C. A, B, and C all have 1000 to begin with. The corresponding database log
is shown on the right:

T_0: read(A) <T_0 start>

A -= 100 <T_0,A,900>

write(A) <T_0,B,1100>

read(B) <T_0 commit>

B += 100

write(B)

T_1: read(C) <T_1 start>

C += 1000 <T_1,C,2000>

write(C) <T_1 commit>

When recovering from a failure, the recovery algorithm scans the log
for transactions that contain both the ’start’ and ’commit’ records. These
are redone. The redo operation must be idempotent, i.e. multiple redo’s
must be equivalent to one, otherwise a failure during the recovery may break
consistency.

2.2 Immediate Database Modification

Under the immediate database modification recovery scheme, database
modifications are allowed during active transactions.

When a transaction is processed, we start by writing 〈Ti, start〉
to the log. When the transaction wants to update values, we write
〈Ti, data item, old value, new value〉 to the log, and then update on disk.
When the transaction partially commits, we write 〈Ti, commit〉 to the log.

When recovering from a failure, the recovery algorithm scans the log
and perform 2 different actions:

2/ 3



Recovery August 15, 2006

• if a transaction in the log has the ’start’ record but not the ’commit’
record, the transaction is undone, i.e. the data items are set to ’old
value’

• if a transaction in the log has both the ’start’ and the ’commit’ records,
the transaction is redone, i.e. the data items are set to ’new value’

2.3 Checkpoints

Of course, the entire database log should not be replayed each time the
DBMS restarts, so the DBS periodically does the following:

1. flush all log records to stable storage,

2. flush all modified buffer blocks, and

3. output 〈checkpoint〉 to the log.

No transactions are allowed to update while a checkpoint is being cre-
ated. In the event of a failure, all the log records before a checkpoint are
ignored, as they are already on disk.

3 Buffer Management

To reduce disk access, logs are buffered before output to disk. This im-
poses additional requirements on the recovery algorithm:

• a transaction may not enter the ’commit’ state, before the ’commit’
record is on stable storage,

• log messages must be output sequentially to disk, and

• logs must be written to disk before data.

3/ 3


