
Query Optimization August 15, 2006

1 Query Optimization

Query optimization is selecting the most efficient query-evaluation plan
from the set of equivalent plans possible for processing a given query.

The optimizer first generates a set of equivalent relational algebra ex-
pressions, then create different strategies for processing the query, choose
the most effecient algorithm, index, etc. Then it estimates the cost of each,
and then choose the most efficient one. It must also select a strategy

2 Size Estimation

Estimations of the size of an evaluation plan are measured in disk block ac-
cesses, as this is the performance bottleneck. The DBMS catalog maintains
information about each relation, tuple count nr, block count br, tuple size
lr (in bytes), tuples per block fr, number of distinct values in relation for an
attribute V (A, r), and the minimum and maximum values for an attribute
min(V (A, r)) and max(V (A, r)) . The catalog is updated in idle periods.

A subset of the estimation rules of selection result size are:

|σA=value(r)| ≈
nr

V (A, r)

|σA≤value(r)| ≈ nr ·
v −min(A, r)

max(A, r)−min(A, r).

The estimation of cartesian product r × s is nr · ns · (lr + ls). Estimation
rules of natural join r ./ s result size are:

• if the relations have no attributes in common, then |r ./ s| ≈ |r × s|

• if the common attributes are a superkey for r, then each tuple in s will
join with at most one tuple from r, so the estimation is ns · (lr + ls).

• in other cases, the following is a reasonable estimate:
nr · ns

V (R ∩ S, r)

Estimating the size of a theta join can be done using a transformation
rule

r ./θ s = σθ(r × s).

Projection is estimated to ΠA(r) ≈ V (A, r) since projection eliminates
duplicates.

1/ 3

Query Optimization August 15, 2006

3 Transforming Relational Algebra Expressions

2 relational algebra expressions are equivalent if, for every database in-
stance, the two expressions always generate the same set of tuples.

A subset of the equivalence rules:

• Conjunctive selections can be cascaded σθ1∧θ2(E) = σθ1(σθ2(E))

• Selection is commutative σθ1(σθ2(E)) = σθ2(σθ1(E))

• Iterative projection can be simplified ΠA1(ΠA2(...(ΠAn(E))...)) =
ΠA1(E)

• Set union and intersection are commutative and associative, e.g. E1∪
E2 = E2 ∪ E1 (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

• Natural joins are associative (E1 ./ E2) ./ E3 = E1 ./ (E2 ./ E3).

The last rule is very important, as joins are expensive. Therefore we will
always join the smallest relations first and select before join.

Πcustomer-name((σbranch-city=”Aalborg”(branch)) ./ account ./ depositor)
= Πcustomer-name(((σbranch-city=”Aalborg”(branch)) ./ depositor) ./ account)

The optimizer use equivalence rules to systematically generate all ex-
pressions equivalent to the given expression by trying to match a subex-
pression with one side of an equivalence rule.

4 Cost-based Optimization

A cost-based optimizer generates a range of query-evaluation plans from
a query, and chooses the one with the least cost. The search for best plan is
very large, but cost values can be saved for subplans, enabling a dynamic

2/ 3

Query Optimization August 15, 2006

programming algorithm for selecting the optimum plan. The algorithm
can also discard sets of subplans if they are more expensive than the cheap-
est one found yet. However, the optimization algorithm has exponential
complexity!

5 Heuristic Optimization

Heuristic optimization uses general rules instead of calculating cost of
individual queries. Some typical rules:

1. Cascade conjunctive selections

2. Select early - move selections down the query tree

3. Small selections and joins first

4. Replace cartesian product followed by selection with join

5. Project early - move projections down the query tree

6. Pipeline where possible

3/ 3

