Query Processing August 18, 2006

1 Query Processing

Given a query, the DBS translates a query stated in a high-level language
such as SQL, into (extended) relational algebra, optimize it, and then eval-
uate the query.

The translation from high-level language to SQL involves the usual lan-
guage interpretation phases scanning (finding language tokens), parsing
(building a parse tree), and semantic analysis (verify existance of relations
mentioned in statements, etc.). Views are also replaced with the relational
algebra expression to compute the view.

Translating from SQL, which is declarative (goal explicit, algorithm im-
plicit), to relational algebra can be done in several ways, e.g.

SELECT age FROM person WHERE age >= 18

could be translated to one of

Tage>18(ILage (person))

age (Tage>18(person)).

Furthermore, relational algebra expressions are analyzed by the query
optimizer to find the optimum execution, e.g. transforming the query to an
equivalent but more efficient query, and whether to use indexes or not. The
result of this analysis is a query evaluation plan, which can be represented
graphically as a tree decorated with instructions to the query execution
engine, which executes the query and returns the results.

2 Cost

The cost of evaluating a query is measured by CPU cost, i.e. algorithm
complexity, and disk access, i.e. seek time, blocks read, blocks written. We
focus on disk access, as it often is the bottle-neck of DBSes, and simplify
the disk operation to number of block transfers.

3 Sorting
If records are sorted on disk, we can gain performance in queries on the
sorting attribute. The records of a relation may not fit in memory, so we

use the external mergesort algorithm. If we can fit M blocks of a relation
in memory, the external mergesort algorithm is as follows:

1/3



Query Processing August 18, 2006

i=0

repeat
read M blocks (or whatever is left) of the relation into memory
sort the M blocks using quicksort (divide-and-conquer sort alg.)
write M blocks to file F_i
i++

until end of relation

read 1 block from each file F_i into memory
repeat
choose the first of all the blocks and write it to output
replace that block with the next block from the file F_i
until all blocks from all files was read

If there are more files F_i than memory M, the algorithm must be per-
formed in multiple passes - sort the first M files to 1 output file, etc.

4 Evaluating Selection

4.1 File Scan

Evaluating a point query selection (equality(cur—vaiue(relation))) on a re-
lation which is stored in a single file can be done by binary search if the file
is sorted. Binary search rules out half the tuples for each iteration, resulting
in a cost of logs b, where b is the number of disk blocks in the file. If the file
is not sorted, we must use linear search, which has average cost b/2 and
worst-case cost b.

4.2 Index Scan

If we have an index on the search key (selection attributes), we can do an
index scan. I assume that the indexes are B™-trees.

e If we search in a primary index (an index on the attributes on which
the file is sorted), we can do the operation accessing h+r disk blocks,
where h is the height of the tree and r is the number of records in the
result (r = 1 if the search key is a superkey).

e If we search in a secondary index (the file is not sorted on the index
attributes) and the search key is a superkey, we can do it accessing
h + 1 blocks. If the search key is not a superkey, each index entry

2/ 3



Query Processing August 18, 2006

points to a bucket of pointers to records. So we have to read the
bucket record and the record itself. Worst-case, this may result in
h + 2r disk access (potentially worse than linear scan!)

Range queries like 0,5.>15(person) can be done effeciently with a pri-
mary index, as we may find the first record where age = 18 and retreive all
the remaining records.

5 Evaluating Joins

In the general case, we can use the Nested-Loop Join to evaluate the theta
join r >y s:

for each tuple tr in r
for each tuple ts in s
if tr theta ts, add tr.ts (concatenation) to the result

It can always be used, but is expensive: in the worst case it uses
blocks(r) + tuples(r) - blocks(s) disk accesses. In the best case, where s fits
in memory, it uses blocks(r) + blocks(s).

The Block Nested-Loop Join is an improvement, as it tests per block,
not per tuple, which yields a worst case of blocks(r) + blocks(r) - blocks(s):

for each block Br of r
for each block Bs of s
for each tuple tr in Br
for each tuple ts in Bs
if tr theta ts, add tr.ts to the result

If we have an index on the join attribute in the inner relation (r),
we can use the Indexed Nested-Loop Join, where we use index lookups
instead of file scan on the join attributes for the inner relation. The cost
would then be blocks(r) + tuples(r) - cost of selection on(s).

The Merge Join algorithm uses the external mergesort algorithm (de-
scribed earlier) to sort the relations by the join attributes, and then use a
procedure similar to the 'merge’ to perform the join (a binary search).

The Hash Join algorithm partitions the 2 relations in ’buckets’ by hash
value on the join attributes, and then perform a separate indexed nested-
loop join on each 'bucket’.

3/ 3



