Physical Database Design August 18, 2006

1 Physical Database Design

The logical level of DB systems must be implemented in the physical level.
The implementation should perform well even with huge amounts of data.

2 Storage Media

From the storage device hierarchy (cache, memory, harddisk), we know
that we have fast access to memory and slow access to disk, but memory
is limited due to the cost and is volatile (erased when system failure). Our
algorithms for accessing data must try to minimize disk access, i.e. access
as few blocks as possible, and preferably not move the disk-arm back and
forth too much. This can be accomplished by scheduling a set of accessed
blocks with the elevator algorithm (if the arm has passed the block we
want to access, we must wait until the arm reverses direction), organize
files sequentially on the disk.

3 Storing Records on Disk

A field is an attribute value, as stored on disk. A record is a list of fields
on disk, corresponding to a tuple. A file is a set of records stored on disk.
Databases are stored on block-access devices (HDs), and a block is the
smallest addresable unit of data on such a device, e.g. 512 bytes.

If the maximum size of a record is known, data should be stored as
fixed-length records. The record size should preferably be aligned with
block-size, possibly with padding, to avoid 2 block accesses per record. A
fixed-length record file should have a header with a pointer to the first free
record in the file. Each free record should have an extra field with a pointer
to the next free record (linked list), or NULL, if it is the last free record.
When a record is deleted, the record pointer is added to the linked list.

Storage of relations with variable-length records is necessary when
using variable-length attributes (e.g. Binary Large OBjects (BLOBs)), multi-
valued attributes (sets of values), or storing multiple record types in the
same file (to reduce file count).

The byte-string representation method is similar to C strings, storing
records as strings, terminating each record with a special sentinel sym-
bol. This method initially saves disk space, but after deleting and inserting
records, the file will be fragmented. If a record grows longer, it must be
moved, which can be expensive. The slotted-page structure is similar to

1/ 4

Physical Database Design August 18, 2006

a self-defragmenting filesystem with a header, followed by free space, and
the records stored contigously (without space in between) at the end of the
file. The header consists of the following fields:

e The number of record entries in the header (=~ inode count)
e A pointer to the end of the free space

e An array containing the location and size of each record (=~ inode
table)

Records are inserted at the end of the free space. Each time a record is
deleted, the data is ’defragmented’.

The fixed-length representation method uses one or more fixed-length
records to represent a single variable-length record. If the records have a
known maximum length, we can place a sentinel in the field after the
last of the record to signify the end of the record. Another possibility is a
linked list representation, where we add a pointer field at the end of each
record, pointing to the next record in a list of records, where the single-
valued fields are omitted in all but the first in the list. A NULL pointer is
used on the last record in the list. The downside to this approach wasting
the space of the single-valued fields in all the ’overflow’ blocks.

The order of records in files is significant for the time complexity of
the search and insert operations. If files are organized as heaps (no or-
dering), inserting is constant time (O(1)), but searching is linear (O(n))
in the number of records. If files are organized sequentially on some
attribute set, the insert operation is potentially slow, as we may have to
reorganize the file. This can be somewhat remedied by using a linked-list
representation. Searching on values from the attribute set on which the file
is ordered, however, can be done in logarithmic time (O(log, n)). A clus-
tering file organization is accomplished by splitting a relation into files,
based on the value of a particular attribute, e.g. store all the records where
city="Aalborg’ in one file, and the records where city="Aarhus’ records in
another file.

4 Indexes
Indexes are used for optimizing queries.
A primary index is an index on the attribute set, on which the data file

is ordered. A primary index can be dense, having an index entry for each
value of the key, or sparse, having index entries for only a subset of the key

2/ 4

Physical Database Design August 18, 2006

values. When using a sparse index, we find the correct range of key values
in the index, and then use linear scan to find the correct record.

To speed up searching in a large index, we can make a sparse index on
the primary index. This is called a multilevel index.

A secondary index is an index on another attribute than the one on
which the file is ordered. This must be dense.

4.1 BT-tree Indexes

A B*-tree index is an effecient multi-level index, based on a search tree. A
search tree is a tree data structure, in which each node has a set of keys,
dividing a range of the key value into subranges. To search the tree, we
compare to each value in a node, and if the key value is not in the node, we
select the child node whose values are between 2 key values in the parent,
by following a corresponding pointer.

A B+ Tree

7]] n|aas
1] L

S e T

‘H|5 7‘11| 13‘17|19 23‘29| 31‘37|41 43‘47|
NE, ENEE NNNE NN

| I I NI
L R R

A Bt-tree is a balanced search tree, i.e. all leaves have the same depth
(the height of the tree). The maximum number of pointers per node
is decided by the designer of the implementation - a sensible number is
enough pointers for the node to fill an entire disk block. The minimum
number of pointers is half the maximum number, rounded up. The leaves
have data pointers corresponding to keys, pointing to the actual records,

3/ 4

Physical Database Design August 18, 2006

and each leaf has a pointer to the next leaf, enabling linked list-traversal of
the leaves.

Searching a B'-tree index can be performed using only logarithmic
(O(log; n)) disk accesses, where ¢ is the number of pointers per node.

Updates to a B*-tree index may not violate the bounds on the pointers
per node, so updates to the tree structure must be performed in some cases.

Insertions may result putting too many keys in a node. To prevent this
from ever happening, whenever we encounter a node that is 'full’, meaning
that it has the max number of keys, we split the node into 2 new nodes, and
move the median (middle) key up to the parent node. If the root node has
the max number of keys, we split it and make a new root with the median
value.

There are two problems with deleting elements: first, the element in an
internal node may be acting as a separator for its child nodes, and second,
deleting an element may put it under the minimum number of elements
and children. Each of the problems must be dealt with, recursively up
through the tree. The deletion, though complicated, is still performed using
only logarithmic disk accesses, as a function of pointers per node.

4.2 Hash Index

A hash index is yet another index type, using a hash function from search
key to a bucket pointer. A bucket is just an unordered record file, which
must then be linear scanned. It is important that the hash function dis-
tributes the keys uniformly in the buckets, to avoid too much linear scan.
It is only usable for equality (=) queries, results from range queries will be
scattered in different buckets.

4/ 4

