
Normalization August 18, 2006

1 Normalization

Normalization is an algorithmic approach to generating a set of relation
schemas from attributes and functional dependencies, that are not redun-
dant (no unnecessary repetitions), and is able to represent all necessary
information.

2 Functional Dependency

A functional dependency is a a generalization of a key. It simply states
that

in relation schema R, if A and B are attribute sets, A → B (A
determines B) is a functional dependency, meaning that when-
ever 2 tuples in a relation over R are equal on attributes A, the
tuples are equal on attributes B.

An example is ’CPR → firstname’ - if we know ’CPR’, we know ’first-
name’, but not the other way around. Functional dependencies are decided
by DB designers and are the semantics of the DB.

A key constraint is a functional dependency: ’K → R’, where the su-
perkey determines all the attributes in a relation. Whenever the K attributes
of the 2 tuples are equal, all the attributes are equal.

3 Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF) is a DB decomposition requirement
that avoids most redundancy, has lossless join, meaning that joining
subrelations must yield the original relation. However, BCNF is not always
dependency preserving, BCNF decompositions may violate functional de-
pendencies.

We say that a relation schema R is in BCNF if all FDs X → Y associated
with R are trivial (Y ⊆ X), e.g. B → B, or X is a superkey for R, e.g. B → R.
In plain terms, this means that the only allowed FDs for a relation schema
in BCNF are superkeys.

3.1 Attribute Set Closure

The attribute set closure X+, which is all the attributes that X deter-
mine, can be computed by repeatedly applying Armstrongs axioms

1/ 3



Normalization August 18, 2006

reflexivity Y ⊆ X =⇒ X → Y (find trivial FDs)
augmentation X → Y =⇒ AX → AY (implicit ∪)
transitivity X → Y and Y → Z =⇒ X → Z

and derivations thereof. The attribute set closure is sound, meaning
that it only generates correct FDs and it is complete, meaning that it gen-
erates all FDs.

3.2 Decomposition

A schema in BCNF can be created algorithmically by iteratively decompos-
ing the original schema.

If there is a FD X → Y associated with a relation schema R that violates
BCNF, the schema can be decomposed into subrelations XY and R-Y, e.g.

R = name,CPR, pet− license− ID, pet− name

FDs:

CPR → name, pet − license − ID and pet − license − ID →
pet − name. The latter violates BCNF, because ’pet − license −
ID+ 6= R

Decomposition:

P = { pet-license-ID, pet-name } (pet)
O = { name, CPR, pet-license-ID } (owner)

3.3 Canonical Cover

A canonical cover for a set of FDs is an equivalent set of FDs without
redundance, meaning that there may not be extraneous attributes, and
the left sides of FDs are unique. The canonical cover can be computed
algorithmically with a fixpoint algorithm, that apply rules iteratively, until
the result set does not change.

4 Third Normal Form (3NF)

All schemas in BCNF are in Third Normal Form (BCNF is stricter), but
in contrast to BCNF it is always possible to find a 3NF decomposition that

2/ 3



Normalization August 18, 2006

is dependency preserving (FDs hold), has lossless join (joining yields
original). However, 3NF decompositions may be redundant.

We say that a relation schema R is in 3NF if:

all FDs and their derivations (F+) X → Y associated with R are
either trivial or X is a superkey for R, or each attribute in Y-X
is contained in a candidate key for R.

The decomposition algorithm for 3NF normalization works as follows:

for each FD X->Y in F+

if no schema contains XY

create new schema X,Y

if no schema contains candidate key for R

create new schema with candidate key for R

3/ 3


