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Introduction

The system described herein could be used by composers of electronic music
who wants to go beyond the limits of existing music software. The system is
perfect for loop-oriented music.

Development of this system was partly motivated by the lack of an exist-
ing tool with suitable flexibility and ease of use.

Terminology

A few musical and music technological terms will be used in the report. Some
of these are considered general knowledge and are not explicitly defined. To
avoid confusion, a few of the less known terms are defined here:

pitch the frequency of a sound
volume the loudness of a sound

note a named set of frequencies. For instance, the note A consists of the
frequencies with frequency 440 - 2", n € Z.

chord a combination of 3 or more pitches at once.

well-tempered tuning a historically and culturally (western) defined way
of adjusting the frequencies that can be produced by an instrument

part a time-limited subset of a musical composition. To exemplify, a song
could consist of a verse and a chorus. The verse and chorus would then
be two different parts.

timbre a common property of a selection of sounds, enabling the listener to
recognize that they all emenate from the same source. For example, a
drum has a different timbre than a saxophone.

beat pattern a specification of a rhythmic figure, usually used for control-
ling virtual drum-kits.



Introduction

white noise a random signal, consisting of all frequencies at once. A radio
set between station frequencies picks up white noise.



Chapter 1

Analysis

In Section 1, the current state-of-the-art music composition software tools
are described. These tools fall into three categories: sequencing applications,
modular composition systems, and software synthesis languages. Sequencing
applications will be described in detail in Section 1.3, modular composition
systems in Section 1.4 and software synthesis languages in Section 1.5. The
tools have one similarity: they operate on two forms of data, waveforms and
Musical Instrument Digital Interface data. Waveforms will be explained in
Section 1.1 and the Musical Instrument Digital Interface in Section 1.2. The
need for a new language for composition of music is described in Section 1.6.

Section 2 defines requirements to such a language. Requirements con-
cerning flexibility are described in Section 2.1 and requirements concerning
usability are described in Section 2.2.

Section 3 defines requirements to the language interpreter.

1 State of the Art

1.1 Waveforms

Waveforms can be created by a sampling process. Sampling is done by
connecting a microphone to the input of an Analog-to-digital converter (AD-
converter) chip. The membrane of a microphone converts changes in air
pressure to voltage values. The AD-converter converts the voltage values to
samples, which are ordinary signed integers. These integers have a fixed size
for a single sampling process. The industry standard sample size is 16 bit
at the time of writing. This conversion from voltage to sample is performed
at a fixed frequency, called the sampling frequency. The industry standard
sampling frequency of most music software at the time of writing is 44100
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CHAPTER I. ANALYSIS

samples per second or 44100 Herz (Hz). The samples thus recorded by the
sampling process are stored in a list called a waveform. If the user wants to
record 10 seconds of sound (/) and the sampling frequency is 44100 samples
per second ( fs), the number of samples in the waveform (s) is:

s=1-fs =10 s-44100 samples/s = 441000 samples

The samples in a waveform can be converted back to voltages by a Digital-
to-Analog converter (DA-converter) chip. This conversion from sample to
voltage is also performed at a fixed frequency. The voltages output by the
DA-converter can be used to directly control the membrane of a loudspeaker.
If conversion is done at the sampling frequency, the sound thus produced
by the speaker is similar to the original sound recorded. This similiarity
is determined by the sampling frequency as well as the size of the signed
integers of the samples. The larger the sampling frequency and the more
bits in the integers, the greater the similiarity. This similiarity is denoted
sound quality.

Alternatively, instead of sampling a sound using a microphone and an
AD-converter, waveforms can be created artificially by an algorithm. The
proces of creating artificial sounds is called synthesis.

1.2 Musical Instrument Digital Interface

The Musical Instrument Digital Interface (MIDI) is a protocol designed
for communicating data between MIDI controllers, MIDI sequencers, and
MIDI instruments. The interface between such devices is a serial cable
connection|8].

A MIDI controller is an input device that generates MIDI messages.
These messages are typically note on messages, note off messages, or con-
troller messages. Note on and off messages consist of a binary value which
is either note on or note off, a MIDI note number which is a 7-bit unsigned
integer in the range 0-127, and a wvelocity value, which also is 7-bit and ranges
from 0 to 127. Controller messages are general purpose data, which consist
of a controller ID and a controller value. The controller ID defines a register
to change in the data of the receiver and the controller value defines the new
value to be assigned to said register.

A MIDI sequencer can store the aforementioned messages paired with a
timestamp for each message. The set of message-timestamp pairs constitute
a sequence. The sequence can be replayed by sending the stored messages
precisely at a time relative to the corresponding timestamps.

A MIDI instrument reacts to a note on message by making a sound.

11



CHAPTER I. ANALYSIS

MIDI instruments usually use the MIDI note number and the velocity value
stored in the note message to alter the sound correspondingly. This means
that a MIDI instrument will create a high frequency sound as a response to
a large MIDI note number. Similarily, the MIDI instrument will create a
low frequency sound as a response to a small MIDI note number. Also, the
MIDI instrument will react to a MIDI message with a high velocity value by
playing a loud sound, and a low velocity value will create a quiet sound. MIDI
instruments also reacts to note off messages, either by simply stopping the
sound or by gradually reducing the volume of the sound until it is silenced.
MIDI instruments are synthesizers, devices capable of synthesis.

1.3 Sequencing Applications

Sequencing applications are software-based MIDI sequencers and operate
on a sequence. They are operated in different modes by the user. The
operation mode determine the significance of one axis of a 2-dimensional
visualization, while the other axis signifies time. 2 of the most important
modes are described below.

The arrange mode visualizes tracks as a function of time. A track desig-
nates either a connection to a MIDI instrument, an output to a DA-converter,
or a virtual output managed by the sequencing application. The user operates
on waveforms or on blocks, which are time-limited subsets of a sequence.
The user can change the relative time at which a waveform or a block will
be replayed by moving the block or waveform along the axis denoting time.
The user can also move the block or waveform to a different track, thus
changing either the receiving MIDI instrument or the DA-converter output.
Most sequencing applications also offers the possibility of looping a waveform
or a block, which automatically repeats the waveform or block.

The matriz mode gives the user the ability to edit blocks in detail. Blocks
consist of MIDI messages. These are arranged in a visualization where MIDI
note numbers are displayed as a function of time. Usually, velocity is also
displayed using different colours for different velocity values. MIDI messages
can be created or changed, by entering or moving them in the visualization.

A screenshot of one of the most popular sequencing applications, Logic
2], is shown in Figure 1 on the facing page.

The main advantage of sequencing applications is that the arrange mode
enables the user to easily gain overview of the sequence. The blocks and
waveforms are easily copied and moved, which is a powerful editing technique.

The disadvantages of sequencing applications are mainly of cost and
flexibility:

12
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b Figure 1: Logic 4.7

The Matrixz Editor is at the bottom-left and behind it is the Arrange Editor

e The cost of the software and the necessary computer hardware is consid-
erable. If the user uses MIDI instruments, the cost is further increased.

e When using MIDI instruments, the user must obey the boundaries of
the MIDI message standard. This means that the user only can use
128 different values for pitch or velocity.

e Waveforms are not dynamically changeable, they basically sound the
same each time they are replayed.

1.4 Modular Composition Systems

Modular Composition Systems (MCS) use mathematical functions which
are displayed as boxes in a graphical user interface. The boxes can be
interconnected by virtual cables, which connects the output of one function
to the input of another function. The output of these functions can also
be connected to a box designated “output” or a similar name. The user
can activate the system, which then continously calculates the values of the
functions at a fixed sampling frequency. The values entering the “output”
box can be converted to samples and sent directly to the DA-converter, thus
producing a sound. The way the functions are interconnected determine
every aspect of the sound.

13
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» Figure 2: Max
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MCS’s can also be made to output MIDI messages, which can be output
to a MIDI instrument.

A screenshot of one of the most popular MCS’s, Max[3], is shown in
Figure 2.

The advantages of MCS’s are:

e MCS’s are highly flexible. They have the possibility for changing every
aspect of the synthesis and sequencing.

e The user can create his own synthesizer in a MCS
The disadvantages of MCS’s are:

e [t is very difficult to compose music with melodies and rhythms in a

MCS.

e They depend on relatively fast computer hardware

1.5 Software Synthesis Languages

Software synthesis languages! are similar to MCS’s in that the user control
every aspect of the synthesis. They are regular programming languages with
variables and control structures. There are of course different approaches to
the design of software synthesis languages. The most popular approach uses

!The term software synthesis language, which might be a bit redundant, is used in [10].
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2 separate source file formats, a score file and an orchestra file. The score file
is simply a sequence written in ASCII text format. The orchestra file defines
virtual instruments to be used by the score file.

Virtual instruments are remeniscent of real instruments, because they
define a timbre (see Terminology on page 8). All notes played by a real
instrument will have the same timbre regardless of other parameters such as
pitch. Similarily, a virtual instrument can be used to create virtual notes that
output waveforms which share a common timbre. This idea can be described
in object-oriented terminology. The virtual instruments could be viewed as
classes, and the virtual notes could be viewed as instances of that class. This
terminology will prove useful in the rest of the report, and therefore virtual
notes are denoted virtual instrument instances.

In some software synthesis languages, each virtual instrument has 3 differ-
ent categories of variables, instrument time variables, control time variables,
and sample time variables. The variable categories differ in the time of
evaluation.

Sample time variables are handled like variables in an average procedural
language. FEach virtual instrument instance produce a special “output”
variable. This variable is converted to a sample, and the resulting samples
are stored in a waveform. Each rendition of a single sample is called a sample
cycle.

Control time variable assignments are evaluated every nth sample cycle,
where:

_ sampling frequency
N control rate

The control rate is measured in Hz and is determined by the user.

Assignments to instrument time variables are only evaluated once per
virtual instrument instance, during the first sample cycle. This is analogous
to the object-oriented concept of the initialization of variables occuring in a
constructor of a class.

Music

One of the earliest software synthesis languages was the Music III language
developed in 1960 by Max V. Mathews and colleagues at Bell Telephone
Laboratories. This language has been revised several times and has been
used for many years[10].

It employed the method of using a score file and an orchestra file explained
above. The orchestra language was similar to assembly code and used vari-
ables called signals, which could be assigned values from wave-generating
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functions. A standard example of a wave-generating function is the sine
function.

Because of the similarity to assembly code, the language is not very
readable.

Csound

Another popular language was Csound. Csound was named after the fact that
it was implemented in ANSI C, which made it portable between different
hardware platforms. Software synthesis languages was rarely portable in
1986, when the language was created. The name would suggest similarities to
C, but Csound is even more akin to assembly code than the Music language.
Csound used the concept of a score file and an orchestra file, as well as the
concept of instrument, controller, and sample time variables.
The readability is like the Music language.

MPEG4 Structured Audio Language

A more modern descendant of Csound is the MPEG/ Structured Audio
language (MP4-SA). It was created in 1998 by the Machine Listening Group
at MIT Media Laboratory as a radical new standard for the Moving Pictures
Ezxpert Group (MPEG) audio file format[5]. The basic idea of MP4-SA was
to contain virtual machine code instead of audio data in a MPEG file.

The concept of the MP4-SA language is very similar to that of Csound.
It has the same three categories of variables and is also divided into a score
file and an orchestra file. However, the MP4-SA orchestra language (SAOL)
syntax is very similar to C and contains a lot of built-in functionality to help
the programmer perform difficult tasks. The built-in functionality can also
be bypassed, and the expert programmer can control everything down to the
output of individual samples.

Unfortunately, the MP4-SA score language (SASL) is rudimentary, con-
taining only the basic sequence in ASCII format, just like Music and Csound.

The main advantage of software synthesis languages is that they are as
flexible and offer as much control as MCS’s.

The disadvantages of software synthesis languages are:

e [t is difficult to gain overview of a composition by looking at the source
code

e The source code does not provide the user with an intuitive sense of
what the resulting music will sound like after compilation
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1.6 The Need For a New Software Synthesis Language

The power and flexibility of software synthesis languages makes them the
tool of choice for users who wants to go beyond the limits of other types
of music software. However, the current software synthesis languages have
limitations which hinders the creative process. This will be shown using the
work process of the language MP4-SA as an example.

Virtual instruments and a sequence definition is needed to create a com-
position in MP4-SA.

The virtual instruments are defined in a SAOL file. An example of such
a file is shown in Example 1 on the following page. This program defines a
single virtual instrument called “bass”. If more instruments were to be used,
much of the code defining “bass” would be reused in the definitions of those
virtual instruments.

The sequence is defined in a SASL file. It is unfeasible to write the
sequence for a complete composition by hand. Fortunately, the sequence
can be created by way of a scripting language. Such a script, written in
Python[9], is shown in Example 2 on page 19, and an excerpt of the SASL
output is shown in Example 3 on page 19.

As the example shows, even rudimentary compositions require quite a
few lines of code. This is detrimental to the user’s overview of the composi-
tion. Furthermore, the compiling process becomes lengthy due to combined
interpretation of a script language and compilation of the results.

A new language should retain the flexibility of the mentioned languages.
It should also reduce code size and only employ a single type of source
file containing both the virtual instrument definitions and the sequence, to
facilitate the user’s overview of the composition. Furthermore, the creation
of sequences should be made easier by enabling the user to structure, embed
and loop parts of his composition. Finally, interpretation should be possible
using only a single command.

The users of the new language could be interested in creating professional
audio for electronic music. The language might also be used for rendering
sequence files with virtual instruments programmed by the user.

17
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7 Example 1: SAOL program (some code omitted)

global

{
srate 44100;
krate 1050;

table bass(sample, -1, "/home/schmid/samples/bass.wav");

route(tonebus, bass);
send(mixer; 2, .2; tonebus);
outchannels 2;

}
instr bass(midinote)

imports table bass;

asig out, ptr; // ’asig’ type is sample time
ivar freq, tickstep; // ?’ivar’ type is instrument time
ksig samplestep, tick; // ’ksig’ type is control type

// envelope settings
ivar atime; // attack
ivar rtime; // release

// internal env state

ivar attack;

ivar release;

ivar sustain;

asig env; // env output

// calculate sample step value
samplestep = cpsmidi(midinote) / cpsmidi(60);

// ENVELOPE COMPUTATION
atime = 0.01; // attack time (s)
rtime = 0.1; // decay time (s)

// computes envelope state
if (dur > atime + rtime)

{
attack = atime;
release = rtime;
sustain = dur - (atime + rtime);
s
else
{

attack = dur/2;
release = dur/2;
sustain = 0;

// compute env from envelope generator
env = kline(0, attack, 1, sustain, 1, release, 0);

// OUTPUT SAMPLE
out = tableread(bass, ptr);
output (out*env) ;

ptr = ptr + samplestep; // step through sample

}
instr mixer(rt60, wetdry)
{
/1 ...
}
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1 Example 2: Python program that generates the output in Example 3

#!/usr/bin/env python
import random

# SUGGESTED INSTRUMENT CLASS
class Instrument:
def __init__(self, name):

self .name = name

de

h

make (self, frombar, tobar):

print "\n// Instrument.make: h
print "//\tname:", self.name

print "//\tfrom bar", frombar, "to", tobar

# STEP SEQUENCER
class StepSequencer(Instrument):
def make(self, frombar, tobar):
Instrument.make(self, frombar, tobar)

arp = [ 60,0,0,60, 0,0,0,70, 0,70,0,0, 0,0,0,60,
0,0,0,0, 0,0,0,0, 0,0,0,0, 63,62,61,0 ]
for bar in range(frombar, tobar, 2):
for step in range(len(arp)):
if arp[step]!=0:
stepstart = bar * 4 + step * 0.25
print stepstart, self.name, 8.0/len(arp), arp[step]

# MAIN PROGRAM
bars = 58
random.seed (711)

# song globals
print "O tempo 80"
print bars*4+3,"end"

bass = StepSequencer("bass")
bass.make(1,bars)

1 Example 3: Excerpt of SASL score generated by Python program

0 tempo 80
235 end

// Instrument.make:

// name: bass

// from bar 1 to 58
4.0 bass 0.25 60

4.75 bass 0.25 60

5.75 bass 0.25 70

6.25 bass 0.25 70

7.75 bass 0.25 60

11.0 bass 0.25 63

11.25 bass 0.25 62
11.5 bass 0.25 61

etc...
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2 Language Requirements

2.1 Flexibility

Flexibility is deemed the most important property of a new software synthesis
language. A few of the most important aspects of flexibility are listed below:

Instrumentation The user should be able to create virtual instruments of
all sorts. The synthesis should therefore be customizable down to the
output of individual samples.

Reusability With Variations Parts of a composition should be reusable,
with the posibility of changing certain aspects. For instance, a part
could be reused, but with a different virtual instrument.

Effects An effect is a filter (or a function, for the mathematically inclined)
with samples as input and output. Typical effects are delay and reverb,
which simulate acoustic properties, but any algorithmically describable
filter should be creatable.

Randomization It should be possible to randomize every aspect of a com-
position, including structure, pitch and synthesis.

2.2 Usability

Often, composers (including myself) lose patience with musical composition
tools when the creative process becomes too difficult. Therefore, it is very
important that a software synthesis language is easy to use.

Learning Curve Composition of simple music should be easy. The user
should be able to make his first composition in a few minutes, en-
couraging him or her to try creating more complex compositions early
in the learning process. The language should also report detailed
programming errors, to teach the user the rules and constraints of the
language as early as possible.

Writability The language should encapsulate tedious tasks into short state-
ments. For example, the usage of waveform files should be made easy
and transparent. Also, creating melodies and repeating parts should
be accomplished with as few statements as possible.

Readability An experienced user should be able to estimate how a part
of a program will sound when rendered without actually invoking the
interpreter.

20
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Pattern Sequencing A new software synthesis language should contain a
matrix-editing facility for creating beat patterns (see Terminology on
page 8) and melodies.

Hierarchial Composition A new feature of a software synthesis language
would be the ability to embed parts of a composition into larger parts
in a hierarchical fashion. This would aid the user in gaining overview
of a composition and potentially shorten the source code.

3 System Requirements

Speed The interpretation process must be fast, as not to block the creative
process.

Portability The interpreter should be independent of the operating system,
that is, compilable on all main platforms.

Selective Interpretation It should be possible to interpret a selected part
of a musical piece, as to quickly evaluate how it sounds.

Input and Output The interpreter should read and write the two main
uncompressed audio file formats, AIFF and WAV. Furthermore, it
should give the user the option to output a MPEG-3 file.

Single Source File The user should be able to create a composition in a
single source file, to keep overview of the composition.

21



Chapter 11

Design

I introduce Development of Intelligent Music using a Hierarchical Composi-
tion System (DIMHCS)*.

In Section 1, the syntax of DIMHCS is described. In Section 1.1 the
grammar is defined, along with operator precedence and associativity rules.
An example of an Abstract Syntax Tree (AST) created from the rules in the
grammar is given in Section 1.2.

In Section 2, the semantics of the language are explained. Section 2.1
explains the intuitive idea behind the language. In Section 2.2, the basic
components of the language are described, including the datatypes and built-
in functions. In Section 2.3, the evaluation of expressions is explained,
followed by a presentation of control structures in Section 2.4. At this
point, the reader is well prepared to investigate how musical compositions
are constructed in Section 2.5.

In Section 3, the contextual constraints are described. Section 3.1 explains
the type system and Section 3.2 covers the scope rules.

1 Grammar

1.1 Grammar Definition

The terminal symbols of DIMHCS are listed below. Related terminals are
placed in the same line. Terminals are separated by whitespaces.

'The term “intelligent music” is derived from a genre of music called intelligent
electronica. The music of this genre is known for complex and ever-changing structure
and patterns.

22



CHAPTER II. DESIGN

block instrument dsp
init: run:

while if else

tempo output

route ->

addwave default

matrix select pitch velocity offset wave transpose loop
hold rest keep

>

1 {31 CH

and or
= I= < > <= >=
+ - x / -

note octave
sin cos 7
true false

The following is a definition of the grammar for DIMHCS. The grammar
syntax is based on Extended Bachus-Naur Form[4]:

e the EBNF metacharacters are : := () | * [] and +, and they all have
their standard meaning

e xy .. x, means xo | x1 | ... | x,, where the 2’s are in lexicographic
order. For instance ’a’ .. ’c’ means ’a’ | ’b’ | ’c’
program ::= ( block_definition | instrument_definition

| dsp_definition )x*

block_definition ::= ’block’ [ identifier ’:’ ] identifier
’{> class_body matrix_definition ’}’

instrument_definition ::= ’instrument’ [ identifier ’:’ ] identifier
’{> class_body ’}’

dsp_definition ::= ’dsp’ [ identifier ’:’ ] identifier
’{’> class_body ’}’

class_body ::= statement_sequence |
’init:’ statement_sequence
[ ’run:’ statement_sequence ]

statement_block ::= ’{’> statement_sequence ’}’
| statement
statement_sequence ::= statementx*
statement ::= identifier ’=’ expression ’;’
| identifier ’[’ a_expression ’]’ ’=’ expression ’;’

23
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matrix_definition
matrix_contents

optional_list

expression

a_expression

builtin_function

literal

identifier
pitch_literal
numeric_literal
list_literal
expression_list

short_list

short_list_content

matrix_control_literal

boolean_literal

lowercase_letter

| ’if’ ’(° expression ’)’ statement_block ’;’
| ’if’ ’(’ expression ’)’ statement_block

else statement_block ’;’
’while’ ’(’ expression ’)’ statement_block ’;’
’route’
’output’ expression ’;’
’tempo’ expression ’;’
’addwave’ ( identifier |

’=>’ expression ’;’

’default’ ) expression

::= ( ’matrix’ expression ’{’ matrix_contents ’}’ )x*

’select’ matrix_expression optional_list

= ( ’pitch’ matrix_expression
| ’velocity’ matrix_expression
| ’offset’ matrix_expression
| ’wave’ matrix_expression

’transpose’ matrix_expression

::= expression ( ’and’ | ’or’ ) expression

| a_expression

( == | 1= | 10 I IS I rg="? | I>=> )
a_expression
| a_expression
a_expresssion ( ’+> | ’=2 | %> | °/> | 7’ ) a_expression
a_expression ’:’ ( ’note’ | ’octave’ )
identifier ’:’ identifier

a_expresssion ’[’ ( a_expression | ’?7’ ) ]’
identifier
literal
builtin_function
’(’ a_expression ’)’
::= ’sin’ ’(° a_expression ’)’
| ’cos’ ’(’ a_expression ’)’

[ ’(’ a_expression ’,’ a_expression ’)’

::= pitch_literal | numeric_literal | list_literal
| matrix_control_literal | boolean_literal | string

:= lowercase_letter identifier_char*

:= uppercase_letter pitch_char* digit+

1= digit+ | digit+ ’.’ digit* | digitx ’.’ digit+
::= expression_list | short_list

::= ’{’ a_expression ( ’,’ a_expression )* ’}’

::= ’[’ short_list_contentx* ’]’

::= identifier | numeric_literal | string | pitch_literal

[

[

o

= ’hold’ | ’rest’ | ’keep’
1:= ’true’ | ’false’
ci= 23 172 | Y@ | :¢} I 3
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uppercase_letter = 0N L0020 | R | | R

digit =07 .. 9

The operators in expressions have precedence and associativity according
to Table 1. Higher precedence operators are listed at the top of the table and
vice versa. The precedence and associativity of the operators in DIMHCS is
largely based on those of operators in C.

# Table 1: Operator Precedence

Operators | Associativity (When Applicable)
() -
[] -
unary + - -
" right-to-left
x /% left-to-right
+ - left-to-right
== |l= < > <= >= -
and or left-to-right

Furthermore, DIMHCS use the same commenting scheme as C++ and
Java.

1.2 Abstract Syntax Tree Example

A DIMHCS program constructed from the rules in the grammar can be
converted into an Abstract Syntax Tree (AST) by a parser. Example 4 on
the next page shows an example of this process.
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1 Example 4:

instrument bleep

{
sample = sin(lifetime / 100);
output sample;

This is the example code, which is converted into the AST below. Note that
the AST is rotated 90 degrees compared to standard notation[1]. Also, terminal
symbols are enclosed in ’’ and identifier names and literals are enclosed in

())).

- program
‘- instrument_definition
|- ’instrument’
|- identifier (’bleep’)
|- {
|- class_body
| ‘- statement_sequence
|- statement
| |- identifier (’sample’)
|_ 1=>
|- expression
| ‘-~ a_expression
| ‘~ builtin_function
| |- ’sin’
| |-
| |- a_expression
| | |- a_expression
| | | ‘- identifier (’lifetime’)
| | |-/
| | ‘-~ ’a_expression
| | ‘- literal
| | ‘-~ numeric_literal (’100’)
I «_ y);
(4

- 2.
B

- statement
|- ’output’
|- expression
| ‘- a_expression
| ‘- identifier (’sample’)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4

|
[
|
[
|
|
|
|
|
|
[
|
|
[
|
|
|
[
|
|
|
|
[
[

)}:

2 Semantics

2.1 Intuition

The basic idea of DIMHCS is as follows: the user creates a source file con-
taining definitions of Virtual Instruments (VI's), blocks that control the VI's,
and possibly Digital Signal Processors (DSP’s), through which the output of
blocks can be routed. The user then activates the DIMHCS interpreter,
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which performs analysis of the source code, possibly reads waveform files,
and outputs a new waveform file containing the finished composition. The
creation of the new waveform file through interpretation of the source code
is called rendering.

Blocks can define a sequence for controlling VI's through a matriz defi-
nition. The matrix definition in DIMHCS is similar to matrix editors used
in sequencing applications, and blocks in DIMHCS are also similar to those
of sequencing applications (see Section 1.3 on page 12). Matrix definitions
can even control other blocks, which makes a hierarchical structure possible
in a composition. The possibility of routing the output of a block through a
DSP is remeniscent of MCS’s (see Section 1.4 on page 13).

DIMHCS is based on an object-oriented idea, in the sense that VI’s,
blocks and DSP’s all have definitions not unlike classes. Furthermore, these
definitions are instantiated during the rendering process, in which the output
waveforms are calculated. However, DIMHCS is not an object-oriented
language, since the definition of new class types isn’t possible.

The purpose of DIMHCS is to render an output waveform. This is done
by rendering single samples and storing them in a list. The rendering of each
sample is called a sample cycle. As all VI's | blocks and DSP’s are essentially
independent, output waveforms can be rendered separately for each VI, block
and DSP and mixed together afterwards. The output waveform is supposed
to be replayed at a fixed frequency, the global sampling frequency. For now,
DIMHCS is designed to output waveforms at a fixed sampling frequency of
44100 Hz. This could easily be made customizable in a later version.

2.2 Components

Before investigating the informal semantics of the components of DIMHCS,
a few definitions are needed. Q is the set of rational numbers and Z* is the
set of non-negative integers in the following:

Qfr0at C Q is the set of all numeric values
B = { true , false } is the set of all boolean values
P={0,1,...,11} x Z* is the set of all pitches
E  is the set of all DIMHCS expressions
The function V returns the value of non-list DIMHCS expressions (see

Example 5 on the following page). It will be implicitly defined in the following
sections. Its domain and range are defined below:
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V:E — Qfoat UBUP

1 Example 5: The value function V

Note that 2 + 2 are 3 DIMHCS language tokens, not a mathematical
expression.

Vi2+2]=4

An atomic datatype is an indivisible datatype. It cannot be described as
a composition of other types. DIMHCS has the following atomic datatypes:
boolean, numeric, string, and pitch.

Numerics, Booleans and Strings

The simple atomic datatypes of DIMHCS are:

numeric A numeric value is a signed floating-point number. Its literals are
written in the same syntax as floating-point numbers in C or Java.

boolean A boolean value is either true or false

string The string type is not atomic in most languages, but DIMHCS offers
no possibility of changing the characters inside a string, nor of reading
individual characters from a string. Thus, strings are constant in
DIMHCS, which justifies grouping them with the atomic datatypes.

Example 6 shows assignments to variables using numeric, boolean and
string literals.

Pitches

A pitch value describes a frequency using a pair of a note value and an octave
value. This concept is derived from music theory. The note and octave parts

1 Example 6: Numeric, Boolean, and String Literals

b = true; // an assignment to a boolean literal
n = 3.14159265; // an assignment to a numeric literal
s = "hello"; // an assignment to a string literal
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1 Example 7: Pitch literals

pl = C3; // assignments to pitch literals
p2 = D#0;
p3 = Fbil6;

are of numeric type and can be extracted using 2 access operators, :note
and :octave.

The first part, the note name, is written as an uppercase letter followed
by an optional # or b. The uppercase letter must be one of C, D, E, F, G, A,
B/H?, otherwise an error is issued. The note names represent a note number.
They are mapped according to Table 2. The mapping is based on music
theory and will not be explained here.

t Table 2: Note Names

Note Names | Note Number
C, B#, H#
C#, Db
D
D#, Eb
E, Fb
F, E#
F#, Gb
G
G#, Ab
A
A#, Bb, Hb
B, H, Cb

—_ =
DB ©00 Uil W — O

Directly following the note name is the octave number, which is written
as a non-negative integer (see Example 7 for example pitch literals).

The well-tempered tuning (see Terminology on page 8) allows a precise
calculation of a frequency (f) from a note number (n) and an octave (0):

f(n,o) _ fb . 2n/12+o

fv (the base frequency) is the frequency of note number 0, octave 0. In
the case of DIMHCS, this note is named C0. CO traditionally (see [12]) has

2B and H are aliases. This is due to an old discrepancy between danish / german and
international music theory. Danish and german composers use H instead of B.
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the frequency:

fo=V/2-27.5 Hz

With this knowledge, the frequency of any note/octave pair can be cal-
culated by:

f(n,0) = V2.27.5 Hy . 9n/12+e
Example 8 shows calculation of a frequency from a pitch literal.

1 Example 8: Frequency Calculation

We will calculate the frequency of the pitch A3. The note number for A is 9
according to Table 2 on the page before, so we have:

f(9,3) = V2 -27.5 Hz - 291243
97 5.91/4 . 93/4+12/4 11,
97 5 . 9 1/4+3/4+12/4 11,

= 275-2*Hz = 27.5-16 Hz = 440 Hz

<& Implementation Status Note: The original DIMHCS design featured
the possibility of combining several pitches into one to create a chord (see
Terminology on page 8). This feature was skipped due to lack of time. Also, the
mapping from note names to numbers was not implemented before the report
deadline.

Lists

DIMHCS has a list datatype. The entries in a list can be of any type,
including other lists.

Lists dynamically expand to the demands of the program, including
assignment to an element beyond the current limit of the list. When such
an assignment occurs, there is possibility for one or more unassigned entries
between the previously last element in the list and the new last entry. Such
unassigned entries may not be accessed, and any attempt to do so results in
an interpretation error.
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List literals can be written in 1 of 2 different styles, expression lists and
short lists. Expression lists are written using { and } for delimiters and a ,
between each entry. They can contain expressions (see Section 2.3). Short
lists are written using [ and ] for delimiters and no additional tokens between
the actual entries. They may only contain identifier or literal entries.

Example 9 shows assignments to the 2 different kinds of lists literals.

n Example 9: List literals

pitch_identifier C3;

short_list [ pitch_identifier Eb3 F3 1;
// this is a list assignment using the

// short list syntax.

{ 3, 2+2, 10/2 }; // this is a list assignment using the
// expression list syntax

expression_list

Example 10 shows a syntax error, where an expression is used inside a
short list literal.

1 Example 10: Short list syntax error

// sl = [ 2+2 1; // this is a syntax error: expressions are not allowed in short
// lists!

<& Implementation Status Note: Interpretation of lists wasn’t implemented in
time for the report deadline.

Class Types

The 3 class types in DIMHCS are VI, block and DSP. Class definitions of
these types can be written by the user. They can all contain statements
such as assignments. No statement can be written outside a class defini-
tion. Classes are usually instantiated many times during interpretation of a
DIMHCS program. Each instance of a class has its own environment, defining
identifiers accessible from the statements in the class definition. Special
features common for the 3 class types are sections and inheritance.

The functionality of having time-categorized variables discussed in Sec-
tion 1.5 on page 14 is achieved in DIMHCS using a different approach. The
statements in class definitions are divided into 2 sections, the init section and
the run section. The statements inside the init section will be evaluated in the
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beginning of the first sample cycle of a class instance. The statements inside
the run section will be evaluated during every sample cycle. This approach
is inspired from the object-oriented concept of a constructor method. The
sectioning is indicated by the init: and run: keywords.

Example 11 shows the syntax of init and run sections.

7 Example 11: Class Sections

block main

{

init:
X

1]
o

// This is only evaluated during the first sample cycle

run:
x = x + 1; // This is evaluated during every sample cycle

This block sets x to 0 when it is instantiated. During the first and every following
sample cycle, it will be incremented. This means that x is 1 after the evaluation

of the first sample cycle, 2 after the second, etc.

If no sections are specified, all statements are considered part of an
implicit run section. Example 12 shows a definition of a block with an implicit
run section.

1 Example 12: Implicit Run Section

block main
{
x = 2; // This is evaluated during every sample cycle

}

This block sets x to 2 during every sample cycle.

< Implementation Status Note: The init- and run section functionality
wasn’t implemented in time for the report deadline. Fvery statement is considered
part of an implicit run section.

DIMHCS also provides a simple but usable inheritance mechanism for
class types. Any class can define a parent class. The class and the parent class
must have the same type. The semantics for the inheritance are represented
by this very straightforward algorithm:
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To evaluate the first sample cycle of a class instance:

1. Evaluate first the statements of the init section of the parent class,
then the statements of the init section of the class itself.

2. Proceed by evaluating the statements of the run section of the parent
class, then the statements of the run section of the class itself.

To evaluate the subsequent sample cycles of a class instance:

1. Evaluate the statements of the run section of the parent
class, then the statements of the run section of the class itself.

Example 13 shows the syntax of class inheritance.

1 Example 13: Class Inheritance

instrument bad_instrument

{
init:
x = 0;
run:
x = x + 0.01; // increment x during each sample cycle
// unfortunately, this virtual instrument defines no output
}

instrument better_instrument : bad_instrument // inherits from bad_instrument

{

output sin(x); // big improvement: the virtual instrument outputs samples

}

better_instrument inherits the init section and the run section from
bad_instrument. So, upon reaching the output sin(x) statement in the
implicit run section, x is defined and will be increased like in bad_instrument.

<& Implementation Status Note: The inheritance functionality wasn’t
implemented in time for the report deadline.

Virtual Instruments

A VI definition can contain assignment statements, control strucures, as
well as the output and addwave statements. A VI definition is written
using the instrument keyword. VI statements are written between the
curly brackets { and } of the VI definition.

A VI has a set of waveforms associated with it. These waveforms are
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specified with the addwave statement. It has 2 arguments, a identifier
naming the waveform and a string. The string specifies the filename of a
loadable WAV file. addwave statements are written in one of the init or run
sections, but the waveforms are loaded before the interpretation stage. Thus,
the waveforms are static and constant and associated with a VI, not a VI
instance.

A VI instance has a selected waveform, which is represented in the envi-
ronment of the VI instance by the selected_wave identifier. selected_wave
has numeric list type. It also has identifiers called selected_pitch (pitch
type) and selected_velocity (numeric type) defined in the environment.

The number of sample cycles during which a VI instance has existed is
represented in its environment by the numeric lifetime identifier. The
environment of a VI instance also contains the length identifier, which
contains the total number of sample cycles the VI instance will exist before
it is un-instantiated.

The purpose of a VI is to output samples. This is accomplished by the
output statement, which has a numeric argument. This argument is the
output sample of the VI instance.

Example 14 shows a definition of a very simple VI.

1 Example 14: Very Simple VI Definition

// very simple virtual instrument definition
instrument white_noise
{
output ?(0,1); // output a random sample with a value between O and 1

}

This VI outputs white noise (see Terminology on page 8). The noise is generated

by the random function.

Example 15 on the next page defines 2 VI's that output sine waves.
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1 Example 15: Sine Wave VI’s

// another very simple virtual instrument definition
instrument simple_bleep

{
output sin(lifetime / 100);
}

This VI outputs a sine wave. The argument of the sine function determines the
frequency of the output wave. lifetime increases with 1 for each sample cycle.
Each sample cycle will take up 1/44100 of a second given a global sampling
frequency of 44100 Hz.

// virtual instrument that output a 440 Hz sine wave
instrument bleep

{
output sin(lifetime * 440 * (2 * pi) / 44100);
}

This code defines an instrument that always outputs a sine wave of frequency

440 Hz (A3), given a global sampling frequency of 44100 Hz.

Example 16 shows a definition of a VI that use the value of
selected_pitch to generate a frequency corresponding to that pitch.
It employs the formula from page 28 to calculate a frequency from a
note/octave pair.

1 Example 16:

// virtual instrument that output a sine wave with frequency corresponding
// to selected_pitch
instrument pitched_bleep
{
init:
freq = 27.5 * 2°(1/4) * 2 ~ (selected_pitch:note / 12 + selected_pitch:octave);
run:
output sin(lifetime * freq * (2 * pi) / 44100);
}

Example 17 on the next page shows a VI that replays a waveform.
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1 Example 17:

// virtual instrument that replays a waveform
instrument sample_player
{
init:
sample_number = 0;
addwave piano_wave "piano.wav";
run:
output piano_wave[sample_number] ;
sample_number = sample_number + 1;
}

The perceived frequency of a waveform should be changable during play-
back. To perform this task, resampling is used. A basic example of resam-

pling :

We have a waveform consisting of 1000 samples recorded at the sampling
frequency 44100 Hz. The waveform was a recording of a sine wave at 440
Hz. From this waveform we extract all the odd samples. We now have
a waveform of 500 samples. This waveform is replayed at a sampling
frequency of 44100 Hz. This of course causes the produced sound to play
for hals the duration of the original waveform. Furthermore, the new
sine wave sounds as if it were a recording of a 880 Hz sine wave.

Resampling is used by all standard sound cards and most synthesizers.
Almost all systems that use resampling to change pitch, use interpolation
algorithms that enhance the result of the resampling. Such algorithms are
easily created in DIMHCS, but this is beyond the scope of this report.

Example 18 on the facing page shows a VI called default_instrument
that uses resampling. The default_instrument itself cannot be used di-
rectly, but VI's can inherit from it. It is automatically included in source
code format by the parser and inserted before the source code of the user.
This approach is superior to a “hard-coded” version created in the global en-
vironment, because users easily can enhance the default instrument without
having to recompile the entire DIMHCS system.

36



CHAPTER II. DESIGN

1 Example 18:

// default instrument
instrument default_instrument
{
init:
// A easily customizable version of the frequency formula
scale = { 0, 1/12, 2/12, 3/12, 4/12, 5/12,
6/12, 7/12, 8/12, 9/12, 10/12, 11/12 };
basenote_frequency = 27.5 * 2°(1/4); // CO
octave_base = 2;
freq = basenote_frequency * octave_base ~
(scale[selected_pitch:note] + selected_pitch:octave);
ptr = 0;
wave = selected_wave;
run:
output selected_velocity * selected_wave[ptr];
// increment sample number
ptr += freq / basenote_frequency;
}

<& Implementation Status Note: The ability to inherit from the default
instrument was not implemented in time for the report deadline.

Blocks and Matrix Constructs

Blocks are responsible for instantiating VI's. Valid block statements include
assignment and control structures, as well as the tempo and route state-
ments.

Instantiating VI’s is done via a matriz definition and a tempo definition.
A matrix definition is a defined by a subdivision value and a set of lists.

The tempo definition is done via the tempo statement and sets a numeric
value measured in beats per minute (BPM). BPM is the default tempo unit
of rhythmic music. The term beats is in DIMHCS a synonym for 1/4 whole
note (WN), the basic time unit of DIMHCS. The subdivision value is also
measured in WN. If the block in question is instantiated by another block,
it may omit the tempo definition, as the tempo will be the same as that of
the instantiating block by default.

When the block is rendered, the matrix definition serves as a schedule for
the rendering of VI's or other blocks. Informally, a matrix definition is the
DIMHCS equivalent of a sequence, it decides which VI or block should play
at what time and how.
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Example 19 shows a block definition. The tempo definition sets the tempo
to 60 BPM. The matrix definition sets the subdivision value to 1/8 WN. It
selects the pitched_bleep VI and selects 3 pitch values C3, D3, and E3 to be
played. When rendered, the waveform resulting from this block will sound
like the 3 notes C3, D3, and E3 played by the pitched_bleep VI. Note that
although the matrix definition is placed beneath the run: section, it is not
a part of this section. The matrix definition is not a statement.

1 Example 19:

block simple
{
init:
tempo 60; // tempo definition
run:
matrix 1/8 // matrix definition - ’1/8’ is the subdivision
{
select [ pitched_bleep ]
pitch [ C3 D3 E3 ]
}
}

The schedule defined by a matrix definition is divided into time frames
with length (/) depending upon the tempo definition (¢tmp), the subdivision
value (s), and the global sampling frequency (fs).

The length (measured in samples) of a time frame in a matrix definition
can be calculated by:

s

| = .60 s/m - 1
fmp - 1/4 WN beats 00 /m+ fis samples/s

The list set in the matrix definition always contains one or more select
lists, selecting a sequence of blocks or VI's to be instantiated. The select
list may contain either all blocks or all VI's, not a mixture of the two. Each
select list is followed by one or more of these lists:

pitch list If the select list selects VI’s, the pitch list defines the
selected_pitch in the environments for those VI’s.

velocity list If the select list selects VI's, the velocity list defines the
selected_velocity in the environments for those VI’s.

wave list If the select list selects VI's, the wave list defines the
selected_wave in the environments for those VI's.

transpose list If the select list selects blocks, the transpose list defines
values that will be added to the note number of all pitch values occuring
in that block.
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offset list The offset list defines values to be added to the start and end of
the time frames for the selected VI’s or blocks.

If the user specifies a pitch / wave / velocity list for a block or a transpose
list for a VI, an error is issued.

During the rendering process, each select list is rendered separately, and
the resulting waveforms are mixed together.

Actually, the matrix definition of Example 19 on the facing page shows
that for the second and third time slot in the matrix, the select list defines
no instrument to be played. This is not necessary, the pitched_bleep will
“stay selected”.

<& Implementation Status Note: Interpretation of blocks and matriz
definitions wasn’t implemented in time for the report deadline. Some features of
algorithms for rendering matriz definitions are not documented here.

Digital Signal Processors

A DSP defines a filter through which all the output of a block can be routed.
This is done in the block with the route statement. A DSP can contain
assignment statements and the output statement.

DSP’s are only instantiated if a block is routed through them. As each
block will be rendered individually, only one input block exist for each DSP
instance. The input from a block is represented in the environment of a DSP
by the input identifier.

Example 20 on the next page shows a simple DSP, which acts as a filter
removing high frequencies from the input block.
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1 Example 20:

block simple

{
init:
tempo 60; // tempo definition
route -> lowpass_filter; // route output through ’lowpass_filter’
run:
matrix 1/8
{
select [ pitched_bleep ]
pitch [ C3 D3 E3 ]
}
}
dsp lowpass_filter
{
init:
buffer = 0;
run:
output input + buffer / 2;
buffer = input;
}

lowpass_filter outputs the average of the current input sample and the

previous input sample. This filters out output high frequencies in the output.

< Implementation Status Note: Interpretation of DSP’s wasn’t implemented
in time for the report deadline.

Built-in Functions

Although DIMHCS does not allow the user to create new functions, a few
built-in functions has been provided. Any number of built-in functions
could easily be supported in later versions of DIMHCS, but the current
implementation has the functions sin(), cos(), and 7().

sin() and cos() are standard trigonometric functions, returning the sine
and cosine function of their numeric argument. The argument is expected to
be measured in radians.

The ?() function is also quite standard, besides its somewhat strange
appearance. It takes 2 numeric arguments and returns a random numeric
value, such that:

a<?Ca,b)<b

Example 21 on the facing page shows usage of the built-in functions.
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1 Example 21: Built-in functions

angle = 7(0, 2 * 3.141592); // ’angle’ is assigned a random value between O and
// ca. 2 pi

x = cos(angle); // ’x’ is assigned the cosine of that angle

y = sin(angle); // ’y’ is assigned the sine of that angle

2.3 Expressions

DIMHCS evaluates expressions similarly to C or Java. This includes the
use of parentheses, which is not examined further. The semantics of the
operators in DIMHCS are now investigated, grouped after the type of the
operands.

Numeric Operators

Numeric operators are used on numeric type operands and they include
the usual binary operators + - * /. Unary + - also work. The binary
comparison operators == != < > <= >= operate on numeric subexpressions
in the usual way and return a boolean value.

The operators listed above are all fairly standard in languages with ex-
pressions. Apart from these, DIMHCS employ an exponentiation operator ~
and a floating point modulus operator, %. Modulus is traditionally undefined
for non-integers, but DIMHCS numeric values are all floating point numbers.
The semantics of this operator is given below. First we define MAX_DOUBLE
to be the maximum floating point number representable on the computer
platform. Then we define a number N:

dn € Z*(N = 10") A N > MAX DOUBLE

The semantics for the % operator are then:

aN mod bN
N
where ‘mod’ is the standard integer modulus operator. These semantics
are similiar to the % operator of Python[9].
The operators are listed in Table 3 on the next page. Unless specified,
the operators have the same semantics as C or Java.

Via%b] =

Boolean operators

Boolean and and or are used on boolean operands.
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# Table 3: Numeric Operators

Operators | Semantics

unary + - | — means negation, + is only included for completeness
~ | exponentiation ( V[a ~b]=a")
x /% | multiplication, division and modulus
+ - | addition and subtraction
== |= < > <= >= | binary comparison operators

§ Table 4: Boolean Operators

Operators | Semantics
and | V[a and b] = V[a]AV][b]
or | V[aor b] = V[a]VV][b]

The operators are listed in Table 4.

Pitch operators

Pitch subexpressions can use the unary access operators :note and :octave,
which return a numeric value. == and != also work on pitch operands. Apart
from this, pitch subexpressions can use the + and - operators for transposi-
tion, which means adding a numeric value to or subtracting a numeric value
from the note number of the pitch subexpression. Example 22 demonstrate
this feature.

The operators are listed in Table 5 on the facing page.

List operators

Lists can use the unary postfix subscript operator [x], where x is a numeric
index value (starting with 0 as the first value) or ? for a random index. As

1 Example 22:

p =C3 + 2;

This example transposes the pitch €3 up by 2. V[ €3 ]| = (0,3). The value of p
is changed to (2, 3). This value is equal to the value of the pitch literal D3
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# Table 5: Operator Precedence

Operators | Semantics
+ - | transposition
:note | note number (numeric)
:octave | octave number (numeric)
== | V[a == b] = (V[a:note | = V[ b:note |)
A (V] a:octave | = V[ b:octave ])
I=| V[a '=b]=~(V[a == b])

§ Table 6: List Operators

Operators | Semantics
[ 1 | subscripting
+ | concatenation
* | concatenation with itself

the index value is a floating point number, the actual index is rounded to the
nearest integer before indexing. This is an important feature when selecting
a sample from a waveform at a different sample rate than the recorded (see
the dicussion of resampling on page 36). The binary operators + * does
concatenation operations (see Example 23).

1 Example 23:

list [1231];
list[2]; // y is 3
list[?]; // x could be 1, 2 or 3

list * 2; // equals [ 1231 23]

list2

§ Table 7: Instrument Operators

Operators | Semantics
access waveform in instrument
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1 Example 24: If ... Else Control Structure

if(2 == 2) x = 4;; // note the extra semicolon - the syntax requires it
if(x > 3)
{
x =x + 1;
pitch = C3;
};

if(pitch != D3) x = 2; else x = 3;;

if(x >= 2) pitch = C4;

else

{
pitch = D4;
x = 10;

};

Instrument operator

A waveform can be selected from an instrument by the binary : accessor oper-
ator. The left subexpression must be an instrument and the right a waveform
declared with addwave in that instrument. Note that since waveforms are
constant, they may not be changed by assignment.

< Implementation Status Note: The instrument operator wasn’t implemented
in time for the report deadline.

2.4 Control Structures
If ... Else

DIMHCS uses an if ... else control structure similar in functionality to
that of C or Java. However, the syntax is slightly different, because of the
different structure of statement blocks in DIMHCS (see Grammar Definition
on page 23)

The semantics of the if ... else control structure are the same as that
of if ... else control structures of C or Java, and it will not be discussed
further.

Example 24 shows usage of the if ... else control structure.
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1 Example 25: While Control Structure

x = 0;
while(x <= 10) x = x + 1;

while(x >= 0)

{
y=x/2;
X=X -7Y;
}
While

DIMHCS uses a while control structure similar in functionality to that of C
or Java. The syntax for the while control structure is slightly different from
C or Java (see Grammar Definition on page 23).
The semantics of the while control structure are the same as that of
while control structures of C or Java, and it will not be discussed further.
Example 25 shows usage of the while control structure.

2.5 Constructing a Composition

As the components of DIMHCS have been presented, an example of how
to construct an actual composition in DIMHCS is in order. A composition
consists of one or more block definitions and one or more VI definitions.
Furthermore, the blocks can be routed through DSP’s, which also should be
defined.

We will start by defining the VI's. We'll  inherit  from
default_instrument as explained on page 36:

instrument bass : default_instrument

{
addwave default "elecbass.wav";
}
instrument drumkit : default_instrument
{
addwave bassdrum "bdrum.wav";
addwave snaredrum "snare.wav'";
addwave hihat "hihat.wav";
¥

All the VI definitions do is define waveform files. These waveform files
can then be selected from a matrix definition through the wave list.

We will define 2 blocks that has matrix definitions that instantiate the
VI's. No tempo is set, as these blocks will be instantiated from another block.
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block bassline

{
matrix 1/8
{
select [ bass ]
pitch [ F#2 C#2 E2 F#2 E2 C#2 H1 C#2 ]
}
}
block beat
{
bd = drumkit:bassdrum;
sn = drumkit:snaredrum;
hh = drumkit:hihat;
matrix 1/8 // this matrix definition defines 2 sequences, that are to be
// rendered into one rhythm waveform. The first ’hh’ is
// mixed together with the first ’bd’, etc.
{
select [ drumkit ]
wave [hh ] * 8 // a simple hihat rhythm
select [ drumkit ]
wave [ bd . sn . ] * 2 // alternating bass drum and snare drum
}
}

A DSP filter is also included. We’'ll use the filter from Section 2.2 on
page 39.

dsp lowpass_filter

{

init:
buffer = 0

run:
output input + buffer / 2;
buffer = input;

}

We’ll route the “bassline” block through the filter:

block bassline

{
route -> lowpass_filter; // <- this line was added
matrix 1/8
{
select [ bass ]
pitch [ F#2 C#2 E2 F#2 E2 C#2 H1 C#2 ]
}
}

Usually, any DIMHCS composition has a block called “main”, which is
rendered automatically by the DIMHCS interpreter. Here, the main block,
which instantiate the other blocks, must have a tempo defintion. The “main”
block is listed below:
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block main

{
tempo 110;
matrix 1
{
select [ . . bassline - - -]
select [ beat ] * 8
}
}

<& Implementation Status Note: The current version of the interpreter
cannot render this example.

3 Contextual Constraints

3.1 Type System
Formal Type System

DIMHCS has the following basic datatypes: boolean, numeric, pitch, string,
list, instrument, block, and dsp.
Formally, the basic datatypes is defined as a set Tyqgic:

Thasic = {boolean, numeric, pitch, string, list, instrument, block, dsp}

Lists have entries of a subtype. A type description that adequately
describes lists is element in the recursive set 1"

T = Tyasic X T

Elements in T are pairs (t, tj;s;). The field ;5 is undefined for all values
of t except list (see Section 2.2 on page 30). For simplicity, only the first
element in the pair is written for all non-list types.

Expressions (which includes identifiers and literals) and nodes of an AST
can have a type. If E is the set of all expressions, a function T is defined,
that returns the type of a given expression:

T:FEF—T

Example 26 on the following page shows some example output of the
function T.
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1 Example 26: The type of expressions

T[2.718281 ] = numeric
T[E2] = npitch

T[2 + 2 == 5] = boolean
T[ "piano.wav" | = string

Of course, t = list for all lists. ¢, is the type of the entries in the list.
All entries must have the same type, otherwise a type error is issued. An
example of list type:

T[{ 1 } ] = (list, (numeric, undefined))
For simplicity, this is written as:
T[{ 1 } ] = (list, numeric)

Example 27 shows types of lists. Example 28 shows a list assignment that
results in a type error.

1 Example 27: the type of lists

numeric_list ={1, 2 }; // ’numeric_list’ is a list of numeric entries
pitch_list = { C3, D3 }; // ’pitch_list’ is a list of pitch entries
list_list = { numeric_list, { 1 } } // ’list_list’ is a list of (numeric) list entries
T[ numeric_list ] = T[{ 1, 2 } ] = (list, numeric)
T[ pitch_list ] = T[{ €3, D3 } ] = (list, pitch)
T[ list_list ] = T[numeric_list][=T[{ 1 }]
= (list, (list, numeric))
1 Example 28: lists type errors
error_listl = { 1, true }; // this is an error, because the entries
// have different types
error_list2 ={1, {22} 3%} // also an error, because entry 1 is
// numeric and entry 2 is a list

Type Inference

To minimize the debugging time for the programmer, it has been deemed
important to provide precise type error information before the interpretation
stage begins. This advocates a static type system. Static type systems often
requires explicit type declarations before using a variable, but since musicians
often work very intuitively, type declarations in DIMHCS seem unnecessary.
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Instead, DIMHCS employs an automatic type inference system, thus avoiding
the need for explicit type declarations.

The parser recognizes the type of literals. From the literals, the type
of expressions without identifiers can be inferred, as each operator in an
expression returns a specific type based on the type of the operands (see
Section 2.3 on page 41.

The type of identifiers is determined the first time they are used. There
are 2 possible situations in which an identifier can occur for the first time:

e class definitions

e assignments

In the case of class definitions, one of the keywords block, instrument,
or dsp is present, defining the type of a class identifier. Example 29 shows
class definitions in use.

1 Example 29: class definitions

block my_block { }
instrument my_instrument { }
dsp my_dsp { }

The types of the 3 classes are:

T[ my_block ] = block
T[ my_instrument | = instrument
T[my_dsp] = dsp

In the case of assignments, the new identifier is simply assigned the type
of the expression occuring on the right-hand side of the equal sign. When an
identifier is assigned a type, the identifier retains that type until it is out of
scope (see Section 3.2 on the next page). If an identifier which already has
been assigned a type is assigned to an expression of a different type, a type
error is issued. This concept is demonstrated in Example 30 on the following

page.
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1 Example 30:

pitch_identifier = C3; // the expression ’C3’ has pitch type, and
// ’pitch_identifier’ is therefore a pitch identifier

numeric_identifier = pitch_identifier:note;
// the ’:note’ operator takes a pitch operand and returns a
// numeric type value. ’numeric_identifier’ is therefore a numeric
// identifier

pitch_identifier = numeric_identifier; // this statement throws a type error, because
// ’pitch_identifier’ and ’numeric_identifier’
// have different types

The type inference of these 3 assignment statements can be written as
follows:

T[ pitch_identifier | = T[ C3 ] = pitch
T[ numeric_identifier ] = T[pitch_identifier:note ]
= numeric

T[ pitch_identifier | # T|[ numeric_identifier |

3.2 Scope Rules

The scope rules for the language are simple:

e all variable identifiers only have scope inside the class definition in
which they are declared. There are no global variable identifiers.

e class identifiers all have global scope.

e wave identifiers have local object scope, but can be accessed using the
accessor operator, ':’

The rules are illustrated by Example 31 on the next page.

20



CHAPTER II. DESIGN

1 Example 31: Scope Rules

block main // block identifier (global)

{
// implicit declaration of dsp variable ’d’ references ’delay’,
// which has global scope
d = delay;
// declaration of wave variable w, references wave declared inside
// piano definition, using the accessor operator
w = piano:wi;
}
dsp delay // dsp identifier (global)
{
// declaration of numeric value does not interfere with ’d’ in
// ’main’ block
d = 100;
}
instrument piano // instrument identifier (global)
{
// declaration of wave identifier (local)
addwave wl "pianol.wav";
}
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Chapter 111

Implementation

Section 1 explains the choices of tools used for creating the DIMHCS in-
terpreter. Section 1.1 documents the choice of C++ as implementation
language. Section 1.2 documents the choice of SableCC[13] as compiler-
compiler tool.

Section 2 explains the structure of the DIMHCS interpreter. The object-
oriented design of the interpreter is presented in Section 2.1. The syntactic
analysis phase is documented in Section 2.2. The creation of default environ-
ments is described in Section 2.3. The contertual analysis phase is divided
into two subphases, the object identification subphase which is explained in
Section 2.4, and the scope and type checking subphase which is covered in
Section 2.5. The interpretation phase is described in Section 2.6. Finally,
rendering of WAV-files is briefly summarized in Section 2.7.

Section 3 documents the error handling capabilities of the DIMHCS in-
terpreter.

1 Tools

1.1 Implementation Language

The choice of language for implementing the interpreter is based on the
popular programming paradigms of the time of writing and the requirements
for the interpreter itself.

The current trend in interpreter design favours using a object-oriented
language, such as Java, C+4, C#[7] or Python[9] as implementation lan-
guage. This also benefits the selection of the language creation tools, as the
latest tools are written for the object-oriented languages.

The choice between the object-oriented languages were in part based on
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a single but very important requirement for the interpreter: speed. Java
was discarded on this account, because of the overhead of interpretation,
garbage collection and array index checking. Microsofts C# wasn’t practi-
cally available to the programmer at the time of writing. Python was also
considered, but the available language creation tools for Python were not
deemed adequate for this purpose.

C++ was selected due to having the appropriate language creation tools
and the the possibility of compiling the DIMHCS system into an executable
file with sufficient execution speed (see Section 3 on page 21).

1.2 Compiler-Compiler

As the implementation language was selected, the choice stood between 2
C++-compatible compiler-compiler tools, lex / yacc and SableCC. Lex and
yacc output C code, which of course isn’t object-oriented. The output of
SableCC can be C++[6], which is the reason why it was selected.

2 Interpreter Structure

2.1 Object-Oriented Design

The implementation of the DIMHCS interpreter is divided into 3 main com-
ponents: the parser generated by SableCC, an AST analysis component, and
a language component.

Generated Parser Component

The parser is separated from the other components by use of Etienne Gagnons
Extended Visitor Design Pattern[13]. It allows the rest of the system to
traverse the AST generated by the parser depth-first by inheriting from the
DepthFirstAdapter class. Thus, the actual traversal algorithm is hidden
from the language implementor.

AST Analysis Component

Figure 3 on page 55 shows the AST analysis component of the system.

The class ASTAnalysis inherits from the generated DepthFirstAdapter.
ASTAnalysis adds the functionality for using decoration tables and
identification tables from within the analysis classes (see below). The
classes ObjectIdentification, ContextualAnalysis and Interpreter
inherit from ASTAnalysis, thus giving them the tree traversal functionality.
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These 3 classes are responsible for the object identification, scope and
type checking and interpretation, respectively. Each of the classes has a
corresponding Exception class, which is thrown in the case of errors.

The Renderer class handles the actual rendering of waveforms, by using
the Interpreter to evaluate blocks and VI's.

The ContextualAnalysis class use the DefaultEnvironment class to
set up the default global environment as well as default environments for the
blocks, VI’s and DSP’s.

The utility class TreePrinter adds functionality to print an ASCII repre-
sentation of an AST, much like the one in Example 4 on page 26. It inherits
from ReverseDepthFirstAdapter, which is generated by SableCC. It has the
same functionality as DepthFirstAdapter, only it traverses the AST from
right to left. The DecoratedTreePrinter class prints a tree of the same type
as TreePrinter, only the type of each node of the AST is printed as well.

Language Component

Figure 4 shows the language component of the system.

DecorationTable is used to store information associated with each node
of the AST. It employs a hash mapped list, using a function of the memory
address of nodes in the AST as hash function. The actual information is
stored in the entries of the decoration table, instances of the Decoration
class. It stores type and value information.

IdentificationTable is used for storing similar information as
DecorationTable, only the information is associated with the names of
identifiers. It is implemented similarly to DecorationTable, using a hash
function of the identifier name string. The entries of the identification table
are of class Identifier, and they store type and value information, as well
as AST node and scope information.

Type information is stored in instances of the Type class, which contain
the type information described formally in the Type System section on page
47.

<& Implementation Status Note: Storage of the recursive List types was not
fully implemented in time for the report deadline.

The Value abstract class is used indirectly for storing value information
in DecorationTable and IdentificationTable. The NumericValue,
PitchValue, BooleanValue, StringValue and ListValue classes inherit
from this base class. They are used polymorphically by methods in
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b Figure 3: Class Diagram: AST Analysis Component
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» Figure 4: Class Diagram: Language Component
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DecorationTable and IdentificationTable. In C++, polymorphism is
used by dynamic casting of references to class instances with a common
base class using the dynamic_cast<>() operator.

<& Implementation Status Note:

were not fully implemented in time for the report deadline.

The StringValue and the ListValue classes

Furthermore, a utility class called Waveform is implemented. It has func-
tionality for loading and saving WAV files and converting them to numeric

lists.
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2.2 Syntactic Analysis

Syntactic analysis is provided by two mechanisms, a lexer and a parser.

The lexer reads tokens from the input source file, and recognizes terminal
symbols. It is defined in the Lexer class, which is generated automatically
by SableCC. If it reads a token that isn’t specified in the grammar, it issues
an error.

The parser recognizes the phrase structure of the output of the lexer, and
determines if it is syntactically valid. It is defined in the Parser class. The
output of the parser is an AST.

SableCC generates a parser that recognizes the Look-Ahead LR(1)
(LALR(1)) class of languages. The LALR language class is a subset of the
LR language class. The name LR is derived from the fact that LR parsers
read their input from Left to right and produce Rightmost derivations.
The (1) denotes that the parser “looks ahead” on 1 extra input symbol
in the process of recognizing a production. The parsing algorithm is an
implementation of a Deterministic Finite Automaton (DFA). [11][13].

Lexing and parsing is used by the main compiler function simply by
creating an instance of the Lexer class and supplying it a reference to a
file input buffer. Then an instance of the Parser class is created with a
reference to the Lexer instance. Finally, the parser is activated, returning
the root node of an AST.

The parser generates classes for traversing the AST. Example 32 on the
next page shows a few methods of the DepthFirstAdapter class.
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1 Example 32:

The production:

expression = {multiplicative} multiplicative_expression
{add} expression plus multiplicative_expression |
{sub} expression minus multiplicative_expression ;

results in SableCC generating the following methods in DepthFirstAdapter:

virtual void inAMultiplicativeExpression (AMultiplicativeExpression node);
virtual void caseAMultiplicativeExpression (AMultiplicativeExpression node);
virtual void outAMultiplicativeExpression (AMultiplicativeExpression node);
virtual void inAAddExpression  (AAddExpression node);
virtual void caseAAddExpression (AAddExpression node);
virtual void outAAddExpression (AAddExpression node);
virtual void inASubExpression (ASubExpression node) ;
virtual void caseASubExpression (ASubExpression node);
virtual void outASubExpression (ASubExpression node);

For example, when interpreting a addition expression in a program, the
method inAAddExpression() will be called, then the parsing method
caseAAddExpression() will be called, and on completing that, the
outAAddExpression() method will be called.

2.3 Default Environment

The next step is to create the default global environment. This defines a few
default identifiers in the identification table.
At this point, a global identification table has already been

created by instantiating the IdentificationTable class. In this,
all identifiers can be stored, together with their type, value, scope
and some extra data. The default environment is simply created

in that identification table with global scope by the static method
DefaultEnvironment: :createDefaultGlobalEnvironment ().

2.4 Object Identification

The DIMHCS language design influenced the structure of the interpreter.
Because the class type definitions can be referenced before they are defined,
an extra pass over the generated AST was required. This pass is considered a
subphase of the contertual analysis phase and is named object identification.

The object identification is the first subphase of the contextual analysis
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phase, as well as the first complete traversal of the AST generated by the syn-
tactic analysis phase. It enters global identifiers into the global identification
table.

The object identification performs a simple depth-first traversal of the
AST. An ObjectIdentification instance is created for this purpose. The
ObjectIdentification class inherits from the ASTAnalysis class, which has
the tree-traversal functionality. The ObjectIdentification methods enters
global identifiers (and waveforms) and a reference to their node in the AST
into the identification table.

2.5 Scope and Type Checking

The second subphase of the contextual analysis phase is the scope and type
checking. The scope and type checking is performed after the object identi-
fication, checking scope of identifiers and inferring types of all nodes in the
AST as well as all local identifiers.

<& Implementation Status Note: The scope and type checking class is
mislabeled ContextualAnalysis. It should have been named Scope AndType Checking,
but this wasn’t corrected in time for the report deadline.

This second depth-first traversal of the AST is handled by the
class ContextualAnalysis, which is instantiated for this purpose.
The ContextualAnalysis class has the same heritage as the
ObjectIdentification class, which gives it the same tree-traversal
functionality. This subphase makes use of the decoration table, contained
in the DecorationTable class, which makes it possible to add extra
information to a node. This is used for inferring the type of expressions,
which again can be used for inferring the type of identifiers. All type
information is stored in instances of the Type class.

Scope checking is performed simply by marking all local identifiers in
the identification table as having local scope, and when the scope is left, all
identifiers in the identifiers table with local scope are removed.

2.6 Interpretation

The interpretation phase is activated by an instance of the Renderer class.
Interpretation does not entail a single, complete pass over the AST, but
rather a large number of selective passes over nodes in the AST corresponding
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to VI's, DSP’s and blocks.

Interpretation is handled by an instance of the Interpreter class. For
tree-traversal functionality, this class is inherited from ASTAnalysis like
ContextualAnalysis and ObjectIdentification. It uses type information
stored in the decoration table to handle calculation and storage of data.

Runtime Organization

Each data type is represented by a corresponding class inherited from the
Value class. These are BooleanValue, NumericValue, PitchValue and
ListValue. When an identifier is created in the program, a Value subclass
instance and a Type instance is allocated by the interpreter and these are
entered into the identification table.

2.7 Rendering

The rendering phase is handled by the Renderer class.

It was designed to render the block named main, recursively rendering
all other blocks and the VI instances. Unfortunately, implementation
of this phase was not completed before the deadline of the report. To
make testing of the interpretation phase possible, a simple version of the
renderInstrument () method was implemented. This method renders
a single instance of the VI named “test”, using values for length,
selected_pitch and selected_velocity supplied as parameters.

3 Error Handling

Each phase and subphase of the DIMHCS system has an exception class
associated with it. Table 8 on the facing page lists the exceptions for each
phase and subphase. Note that though lexing and parsing strictly isn’t
subphases due to their execution being interleaved, they are still listed as
such for the sake of simplicity. These classes are used for error handling and
error message output.
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# Table 8: Exception Classes

Phase / Subphase Exception Class

Lexing LexerException

Parsing ParserException

Object Identification ObjectIdentificationException
Scope and Type Checking | ContextualAnalysisException
Interpretation InterpreterException
Renderering RendererException

< Implementation Status Note: The RendererEzception is unused in the
implementation at the time of writing.

The exceptions can be used to print the line and character number of the
token estimated to be the first source of the error. Examples 33, 34, 35, 36,
37, and 38 show the error handling.

1 Example 33: Lexer Exception

block main

{
p = Cx; // Cx is not a valid pitch literal
}

DIMHCS interpreter output:

PARSING
lexer error in line 3 pos 9: [3,9] Unknown token: Cx;

1 Example 34: Parser Exception

block main

{
if(2 == ) y = 2;;
}

DIMHCS interpreter output:

PARSING

general parser exception: [3,13] expecting: ’-’, ’+’, >(’, °{’, ’[’, string, ’7’,
’sin’, ’cos’, score control literal, boolean literal, pitch literal, num literal,
identifier

Note that the default parser exception outputs all the valid tokens that could
have been placed where the error occurred
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1 Example 35: Object Identification Exception

block main { }
block main { }

DIMHCS interpreter output:

PARSING
OBJECT IDENTIFICATION
object identification error in line 2 pos 7: identifier ’main’ defined twice

1 Example 36: Scope and Type Checking Exception: Scope Error

block main

{
matrix 1/8
{
select [ bleep ]
}
}

DIMHCS interpreter output:

PARSING
OBJECT IDENTIFICATION
CONTEXTUAL ANALYSIS
contextual analysis error in line 5 pos 18: unknown identifier: bleep

1 Example 37: Scope and Type Checking Exception: Type Error

block main

{
p = C3;
n = 2;
X = p * n;
}

DIMHCS interpreter output:

PARSING
OBJECT IDENTIFICATION
CONTEXTUAL ANALYSIS
contextual analysis error in line 5 pos 11: incompatible types for multiplication
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1 Example 38: Scope and Type Checking Exception: Type Error

block main
{
3

C3;
{cC313;

P
p

DIMHCS interpreter output:

PARSING
OBJECT IDENTIFICATION
CONTEXTUAL ANALYSIS
contextual analysis error in line 4 pos 7: incompatible types for assignment

This error shows that the type inference and subsequent checking works
correctly; an identifier cannot have 2 different types in the same scope.

<&  Implementation Status Note: Note that though the errors in
the examples listed are detected correctly, the error handling isn’t finished
at the time of writing, so some tests of error handling may yield unexpected results.
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Evaluation

Section 1 evalutes the choice of C++ as implementation language for the
interpreter. Section 2 evalutes the DIMHCS system.

1 Implementation Language Evaluation

In retrospect, C++ was an appropriate implementation language, yet not
perfect for the task. The SableCC output was adapted to Java output, and
Java has easier access to polymorphism and references. The implementation
in C++ is very similar to that of a Java implementation, but the code would
look more complex due to casting and reference operators. This difference is
demonstrated by Example 39 on the next page
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1 Example 39:

This example shows an excerpt of the implementation of a trivial interpreter
method, outAAddExpression(), which computes the result of arithmetic
addition. First, the C++ version:

void Interpreter::outAAddExpression(AAddExpression node)
{
// get value from subexpressions
Decoration *dl = dt->get(node.getExpression());
Decoration *d2 = dt->get(node.getMultiplicativeExpression());
Decoration *result = dt->get(node);

// numeric addition
if (result->getType() == t_num)
{
double v;
v = dynamic_cast<NumericValue *>(dl->getValue())->getNumeric()
+ dynamic_cast<NumericValue *>(d2->getValue())->getNumeric();
result->setValue(new NumericValue(v));

Then the same method in Java. It is obviously a bit easier to write, which
means fewer errors and shorter development time:

void outAAddExpression(AAddExpression node)
{
// get value from subexpressions
Decoration di = dt.get(node.getExpression());
Decoration d2 = dt.get(node.getMultiplicativeExpression());
Decoration result = dt.get(node);

// numeric addition

if (result.getType() == T_NUM)

{
double v;
v = dl.getValue() .getNumeric() + d2.getValue().getNumeric();
result.setValue(new NumericValue(v));

2 System Evaluation

At the time of writing, the system is unfinished and cannot be fully tested.
However, the syntactic and contextual analysis phases are functional. The
error handling for these phases also works very well. The system can render
a single VI instance and store the output in a WAV file. The output sounds
as expected.

The system was succesfully compiled and tested on 2 different machines:
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CHAPTER IV. EVALUATION

Name: huba

Hardware Architechture: 233 MHz Pentium MMX
Operating System: Gentoo Linux 2.6.5-r1
Name: homer

Hardware Architechture: 2.80 GHz Intel Xeon
Operating System: Linux 2.4.20-31.9smp

The test included speed of interpretation using the following DIMHCS
program:

instrument test

{
init:
freq = 27.5 * 27(1/4) * 2 ~ (selected_pitch:note / 12 + selected_pitch:octave);
run:
output sin(lifetime * freq * (2 * pi) / 44100);
}

The premature version of the system renders the “test” instrument in a
time frame of 10000 samples. The test results are shown in Table 9:

§ Table 9: Test Times

Machine | Interpretation Time
huba 5m 20 s
homer 23 s
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